Featured Research

from universities, journals, and other organizations

Brain network connections revealed

Date:
July 14, 2011
Source:
University of Notre Dame
Summary:
New research has revealed that the brain is characterized by a highly consistent, weighted network among the functional areas of the cortex, which are responsible for such functions as vision, hearing, touch, movement control and complex associations. The study in primates has revealed that such cortical networks and their properties are reproducible from individual to individual.

New research has shown that the brain is characterized by a highly consistent, weighted network among the functional areas of the cortex, which are responsible for such functions as vision, hearing, touch, movement control and complex associations. The study revealed that such cortical networks and their properties are reproducible from individual to individual.
Credit: Image courtesy of University of Notre Dame

Research conducted by Maria Ercsey-Ravasz and Zoltan Toroczkai of the University of Notre Dame's Interdisciplinary Center for Network Science and Applications (iCeNSA), along with the Department of Physics and a group of neuroanatomists in France, has revealed previously unknown information about the primate brain.

Related Articles


The researchers published an article in the journal Cerebral Cortex showing that the brain is characterized by a highly consistent, weighted network among the functional areas of the cortex, which are responsible for such functions as vision, hearing, touch, movement control and complex associations. The study revealed that such cortical networks and their properties are reproducible from individual to individual.

Ercsey-Ravasz, a postdoctoral associate, and Toroczkai, professor of physics, analyzed 70 man-years' worth of data on macaque brains collected by a large group led by Henry Kennedy in Lyon, France. The Kennedy team injected ink tracers into a portion of the brain and scanned thin brain slices to track the movement of the chemical through the nerve cells' branches, called axons, to the soma of the cells. Kennedy enlisted iCeNSA for its expertise at analyzing networks, which has also been applied to fields as diverse as the spread of disease and the social networks. Their analysis identified the consistency of connectivity among the areas of the brain.

Ercsey-Ravasz, in a study of the data that will be included in a later paper, also has demonstrated that the number of connections is greatest between areas that are closest, and the number declines in a consistent pattern as distance increases. The regularity of the patterns from animal to animal suggests that the connections are necessary, and the fewer long-distance connections likely are control switches that coordinate or modulate information exchange amongst the brain areas.

The study is part of a broader investigation of brain function and intelligence that has accelerated in recent years as researchers abandoned the once-promising analogy between computer circuitry and human intelligence, a project that stalled in the 1970s. "It turns out the brain is not just this beautiful circuitry you could just back-engineer," Toroczkai says. "It is an amazingly complex system, and this is why it is very hard to understand why it works."

The adult primate brain contains 100 billion neurons with branches that connect at more than 100 trillion points. A top-down approach called functional decomposition, identifying bundles within the brain, helps overcome the sheer data volume. The macaque brain has 83 such areas; the human brain more than 120. "What we find is a network of connections between the functional areas," Toroczkai says. "That's important because we now have more detailed information about how the brain is wired on a large-scale, functional level."

Toroczkai and Ercsey-Ravasz will continue research in the field with US and international collaborators, aimed at understanding how information received through the senses and converted to electric pulses is processed in the brain. "It looks like there is some sort of general algorithm that is being run in this brain network," he says. "The wiring is very strange. It is not something you would expect. It constitutes one of the major motivations for this study."


Story Source:

The above story is based on materials provided by University of Notre Dame. Note: Materials may be edited for content and length.


Journal Reference:

  1. N. T. Markov, P. Misery, A. Falchier, C. Lamy, J. Vezoli, R. Quilodran, M. A. Gariel, P. Giroud, M. Ercsey-Ravasz, L. J. Pilaz, C. Huissoud, P. Barone, C. Dehay, Z. Toroczkai, D. C. Van Essen, H. Kennedy, K. Knoblauch. Weight Consistency Specifies Regularities of Macaque Cortical Networks. Cerebral Cortex, 2010; 21 (6): 1254 DOI: 10.1093/cercor/bhq201

Cite This Page:

University of Notre Dame. "Brain network connections revealed." ScienceDaily. ScienceDaily, 14 July 2011. <www.sciencedaily.com/releases/2011/07/110713161828.htm>.
University of Notre Dame. (2011, July 14). Brain network connections revealed. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2011/07/110713161828.htm
University of Notre Dame. "Brain network connections revealed." ScienceDaily. www.sciencedaily.com/releases/2011/07/110713161828.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Hugging It Out Could Help You Ward Off A Cold

Hugging It Out Could Help You Ward Off A Cold

Newsy (Dec. 21, 2014) Carnegie Mellon researchers found frequent hugs can help people avoid stress-related illnesses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins