Featured Research

from universities, journals, and other organizations

Disappearance of genetic material allows tumor cells to grow

Date:
August 2, 2011
Source:
Charité - Universitätsmedizin Berlin
Summary:
Loss of a gene regulator is crucial for a rare type of skin cancer

Scientists at Charité -- Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, the Max-Planck-Institut für Molekulare Genetik Berlin, and four other German institutes succeeded in proving a specific gene loss in a certain human lymphoma, the genesis of which is largely unexplained to date. They investigated the so-called Sézary syndrome. This is an aggressive cancer disease from the group of primary skin lymphomas, the so-called "primary cutaneous lymphomas."

The results of the study, which were published in the current issue of the Journal of Experimental Medicine, provide fundamentally new insights into the genesis and development of Sézary syndrome and possibly other human lymphomas as well.

Malignant Sézary syndrome is characterized by the reproduction of a special type of white blood cells in the skin of male and female patients. By contrast with most other skin lymphomas, patients with Sézary syndrome manifest not only skin contamination but also contamination of blood and lymph nodes by degenerate T cells even at the onset of the disease. The researchers investigated highly purified tumor cells from patients with Sézary syndrome using modern, high-resolution genetic procedures (the so-called array comparative genomic hybridization technique) for hitherto unknown genetic changes. In doing so they identified areas in the genotype of these tumor cells that have become lost in many of the patients examined. A detailed analysis of these areas showed that one of the most frequently affected genes codes for a so-called transcription factor. Transcription factors have key functions in the regulation of cellular gene activity.

"The partial loss of the gene for transcription factor E2A appears to play a very key role in this context because the gene is normally of great importance for natural lymphocyte development," explains Chalid Assaf from the Charité Klinik für Dermatologie, Venerologie und Allergologie. In mice a loss of this gene leads to the genesis of aggressive T cell lymphomas. However, a gene loss in one of the various human lymphoma classes had not yet been found so far.

The researchers also identified several E2A-regulated genes and signal paths in tumor cells, the mere deregulation of each of which is sufficient to enable a tumor to develop. "Loss of E2A in Sézary syndrome is of crucial importance for the aggressive behavior of tumor cells because it contributes to more rapid, uncontrolled growth of cells," emphasizes Stephan Mathas, a scientist at the Charité Klinik für Hämatologie und Onkologie and at MDC. Consequently, it was directly proved for the first time that E2A in humans has the function of a tumor suppressor. The researchers hope that these findings might in future possibly represent the basis for the development of new treatment concepts to offer patients with Sézary syndrome new and more effective therapies.


Story Source:

The above story is based on materials provided by Charité - Universitätsmedizin Berlin. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. Steininger, M. Mobs, R. Ullmann, K. Kochert, S. Kreher, B. Lamprecht, I. Anagnostopoulos, M. Hummel, J. Richter, M. Beyer, M. Janz, C.-D. Klemke, H. Stein, B. Dorken, W. Sterry, E. Schrock, S. Mathas, C. Assaf. Genomic loss of the putative tumor suppressor gene E2A in human lymphoma. Journal of Experimental Medicine, 2011; 208 (8): 1585 DOI: 10.1084/jem.20101785

Cite This Page:

Charité - Universitätsmedizin Berlin. "Disappearance of genetic material allows tumor cells to grow." ScienceDaily. ScienceDaily, 2 August 2011. <www.sciencedaily.com/releases/2011/08/110802090830.htm>.
Charité - Universitätsmedizin Berlin. (2011, August 2). Disappearance of genetic material allows tumor cells to grow. ScienceDaily. Retrieved September 21, 2014 from www.sciencedaily.com/releases/2011/08/110802090830.htm
Charité - Universitätsmedizin Berlin. "Disappearance of genetic material allows tumor cells to grow." ScienceDaily. www.sciencedaily.com/releases/2011/08/110802090830.htm (accessed September 21, 2014).

Share This



More Health & Medicine News

Sunday, September 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Sierra Leone's Nationwide Ebola Curfew Underway

Sierra Leone's Nationwide Ebola Curfew Underway

Newsy (Sep. 20, 2014) — Sierra Leone is locked down as aid workers and volunteers look for new cases of Ebola. Video provided by Newsy
Powered by NewsLook.com
Changes Found In Brain After One Dose Of Antidepressants

Changes Found In Brain After One Dose Of Antidepressants

Newsy (Sep. 19, 2014) — A study suggest antidepressants can kick in much sooner than previously thought. Video provided by Newsy
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) — The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com
Jury Delivers Verdict in Salmonella Trial

Jury Delivers Verdict in Salmonella Trial

AP (Sep. 19, 2014) — A federal jury has convicted three people in connection with an outbreak of salmonella poisoning five years ago that sickened hundreds of people and was linked to a number of deaths. (Sept. 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins