Featured Research

from universities, journals, and other organizations

Ethanol-loving bacteria accelerate cracking of pipeline steels

Date:
August 3, 2011
Source:
National Institute of Standards and Technology (NIST)
Summary:
US production of ethanol for fuel has been rising quickly. Researchers now caution that ethanol, and especially the bacteria sometimes found in it, can dramatically degrade pipelines.

Micrograph of crack in X52 steel after the sample was subjected to mechanical forces for several days in an ethanol solution containing acid-producing bacteria, Acetobacter aceti. Researchers at NIST's biofuels testing facility found that the bacteria increased fatigue crack growth rates at least 25-fold compared to what would occur in air.
Credit: Sowards/NIST

U.S. production of ethanol for fuel has been rising quickly, topping 13 billion gallons in 2010. With the usual rail, truck and barge transport methods under potential strain, existing gas pipelines might be an efficient alternative for moving this renewable fuel around the country. But researchers at the National Institute of Standards and Technology (NIST) caution that ethanol, and especially the bacteria sometimes found in it, can dramatically degrade pipelines.

At a conference this week,* NIST researchers presented new experimental evidence that bacteria that feed on ethanol and produce acid boosted fatigue crack growth rates by at least 25 times the levels occuring in air alone.

The NIST team used a new biofuels test facility to evaluate fatigue-related cracking in two common pipeline steels immersed in ethanol mixtures, including simulated fuel-grade ethanol and an ethanol-water solution containing common bacteria, Acetobacter aceti. Ethanol and bacteria are known to cause corrosion, but this is the first study of their effects on fatigue cracking of pipeline steels.

"We have shown that ethanol fuel can increase the rate of fatigue crack growth in pipelines," NIST postdoctoral researcher Jeffrey Sowards says. "Substantial increases in crack growth rates were caused by the microbes. These are important data for pipeline engineers who want to safely and reliably transport ethanol fuel in repurposed oil and gas pipelines."

Ethanol, an alcohol that can be made from corn, is widely used as a gasoline additive due to its oxygen content and octane rating. Ethanol also can be used as fuel by itself in modified engines. The NIST tests focused on fuel-grade ethanol.

The tests were performed on X52 and X70 pipeline steels, which are alloys of more than a dozen metals. Simulated fuel-grade ethanol significantly increased crack growth at stress intensity levels found in typical pipeline operating conditions, but not at low stress levels. The cracking is related to corrosion. The X70 steel, which is finer-grained than X52, had lower rates of crack growth at all stress levels. This was expected because larger grain size generally reduces resistance to fatigue. In the bacteria-laden solutions, acid promoted crack growth at stress intensity levels found in typical pipeline operating conditions.

Preliminary tests also suggested that glutaraldehyde, a biocide used in oil and gas operations, may help control bacterial growth during ethanol transport.

The findings are the first from NIST's biofuels test facility, where material samples are installed in hydraulic test frames and subjected to load cycles while immersed in fuel inside a transparent polymer tank. Fatigue crack growth and other properties are observed over a period of up to 10 days. NIST staff expect to continue and possibly expand the research to other potential biofuels such as butanol or biodiesel.

Collaborators at the Colorado School of Mines provided the bacteria, which were isolated from industrial ethanol storage tanks. The research was supported by the U.S. Department of Transportation.

* J.W. Sowards, T.D. Weeks, J.D. McColskey, C. Williamson, L. Jain and J.R. Fekete. Effect of ethanol fuel and microbiologically influenced corrosion on the fatigue crack growth behavior of pipeline steels. Presented at DOD Corrosion Conference 2011, La Quinta, Calif., August 1, 2011.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology (NIST). Note: Materials may be edited for content and length.


Cite This Page:

National Institute of Standards and Technology (NIST). "Ethanol-loving bacteria accelerate cracking of pipeline steels." ScienceDaily. ScienceDaily, 3 August 2011. <www.sciencedaily.com/releases/2011/08/110803102856.htm>.
National Institute of Standards and Technology (NIST). (2011, August 3). Ethanol-loving bacteria accelerate cracking of pipeline steels. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2011/08/110803102856.htm
National Institute of Standards and Technology (NIST). "Ethanol-loving bacteria accelerate cracking of pipeline steels." ScienceDaily. www.sciencedaily.com/releases/2011/08/110803102856.htm (accessed October 22, 2014).

Share This



More Matter & Energy News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
China Airlines Swanky New Plane

China Airlines Swanky New Plane

Buzz60 (Oct. 21, 2014) China Airlines debuted their new Boeing 777, and it's more like a swanky hotel bar than an airplane. Enjoy high-tea, a coffee bar, and a full service bar with cocktails and spirits, and lie-flat in your reclining seats. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins