Featured Research

from universities, journals, and other organizations

Software predicted risk in California West Nile virus epidemic

Date:
August 11, 2011
Source:
Brown University
Summary:
A computer model of the spread of West Nile virus was able to predict areas where human cases would be concentrated, especially around Sacramento in 2005. The success of the model, say researchers, depended on its focus on biological factors and on a high volume of reports from members of the public.

Predicting an epidemic in California Using data on the incubation of West Nile virus, the life cycle of mosquitoes, and the flight of birds, DYCAST software successfully predicted where human infections would occur.
Credit: CDC

A computer model of the spread of West Nile virus was able to predict areas where human cases would be concentrated, especially around Sacramento in 2005. The success of the model, say researchers, depended on its focus on biological factors and on a high volume of reports from members of the public.

Related Articles


A computerized epidemiological model of the spread of the mosquito-borne West Nile virus in 17 counties of California in 2005 successfully predicted where 81.6 percent of human cases of the disease would arise and defined high-risk areas where the risk of infection turned out to be 39 times higher than in low-risk areas, according to newly published research. The DYCAST software used in those predictions is now open-source and is being applied to other diseases.

"One of the things that really differentiates DYCAST from other approaches is that it's based on biological parameters," said Ryan Carney, a Brown University graduate student who is the lead author on a paper about DYCAST's performance that appears in the current issue of the journal Emerging Infectious Diseases, published by the Centers for Disease Control. "All of the parameters in the model are based on experimental data related to the biology and ecology of the virus, mosquito vector, and bird host."

It's not just tracking the geography of actual cases. DYCAST "is based on biological parameters."For example, the spatial parameters of the model include how far mosquitoes and infected birds are likely to fly. Key time parameters include how long the virus needs to incubate in mosquitoes before they become infectious and the lifespan of infected birds. Carney said that by using biology to define the geographic and temporal attributes of the model rather than county or census tract borders, which are convenient for humans but irrelevant to birds and mosquitoes, the model allowed the California Department of Public Health to provide early warnings to an area stretching from the Bay Area through Sacramento to the Nevada line, as well as regions in southern California.

Carney implemented the software when he worked for the California department in 2005. (The software was created by Constandinos Theophilides at the City University of New York.) Feeding the model in 2005 were 109,358 dead bird reports phoned in or entered by members of the public via a state hotline and website.

As more dead birds were reported in close proximity, the software would generate daily maps of areas at high risk for human infection, providing an early warning to local public health officials. The software, for example, predicted areas as high-risk more than a month before the first human cases arose, on average.

In Sacramento County, location of the largest West Nile virus epidemic in the United States that year, DYCAST helped mosquito control officials target their testing and spraying resources -- actions that ultimately reduced human illness, Carney said.

After 2005, the department implemented the model throughout the state, although the number of human cases and reported dead birds, along with the model's prediction rates, dropped sharply.

In 2007 Carney enrolled as a master's student at Yale and adapted the DYCAST model to track dengue fever in Brazil, using a version of the software that his CUNY collaborators had converted to an open-source platform. With the specific parameters of that disease, DYCAST was able to predict its spread in the city of Riberγo Preto in Brazil, Carney said, citing unpublished data.

Carney has continued his analysis and development of DYCAST and dengue at Brown, where he is a doctoral student of ecology and evolutionary biology. He said the software at its core has potential to be adapted as an early warning system for other infectious diseases or even bioterrorism attacks.

In addition to Carney, other authors on the paper include Sean Ahearn and Alan McConchie of CUNY (McConchie is now at the University of British Columbia-Vancouver), Carol Glaser, Cynthia Jean, Kerry Padgett, Erin Parker, Ervic Aquino, and Vicki Kramer of the California Department of Public Health, and Chris Barker and Bborie Park of the University of California-Davis.

The Centers for Disease Control funded the research.


Story Source:

The above story is based on materials provided by Brown University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ryan Carney et al. Early Warning System for West Nile Virus Risk Areas, California, USA. Emerging Infectious Diseases, 2011; DOI: 10.3201/eid1708.100411

Cite This Page:

Brown University. "Software predicted risk in California West Nile virus epidemic." ScienceDaily. ScienceDaily, 11 August 2011. <www.sciencedaily.com/releases/2011/08/110811181721.htm>.
Brown University. (2011, August 11). Software predicted risk in California West Nile virus epidemic. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2011/08/110811181721.htm
Brown University. "Software predicted risk in California West Nile virus epidemic." ScienceDaily. www.sciencedaily.com/releases/2011/08/110811181721.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Experimental Ebola Vaccine Shows Promise In Human Trial

Experimental Ebola Vaccine Shows Promise In Human Trial

Newsy (Nov. 27, 2014) — A recent test of a prototype Ebola vaccine generated an immune response to the disease in subjects. Video provided by Newsy
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins