Featured Research

from universities, journals, and other organizations

How butterflies copy their neighbors to fool birds

Date:
August 15, 2011
Source:
University of Exeter
Summary:
The mystery of how a butterfly changes its wing patterns to mimic neighboring species and avoid being eaten by birds has been solved. Scientists located and sequenced the chromosomal region responsible for the wing patterns in an Amazonian butterfly. They found that three versions of the same chromosome coexist in this species, each version controlling distinct wing-pattern forms. This has resulted in butterflies that look completely different from one another, despite having the same DNA.

Pictured are Heliconius numata (top) and its co-mimic Melinaea mneme (bottom) (French Guiana).
Credit: Mathieu Chouteau

The mystery of how a butterfly has changed its wing patterns to mimic neighbouring species and avoid being eaten by birds has been solved by a team of European scientists. The study is published August 14,  2011 in the journal Nature.

Related Articles


The greatest evolutionary thinkers, including Wallace, Bates and Darwin, have all wondered how butterflies that taste bad to birds have evolved the same patterns of warning colouration. Now for the first time, researchers led by the CNRS (Muséum National d'Histoire Naturelle, Paris) and the University of Exeter (UK) have shown how butterflies perform this amazing trick, known as 'Müllerian mimicry'.

Funded by the Biotechnology and Biological Sciences Research Council (BBSRC), the study focused on the Amazonian species Heliconius numata, which mimics several other butterfly species at a single site in the rainforest. One population of Heliconius numata can therefore feature many distinct wing colour patterns resembling those of other butterflies, such as the Monarch's relatives Melinaea, which are unpalatable to birds. This acts as a disguise, protecting them against predators.

The researchers located and sequenced the chromosomal region responsible for the wing patterns in H. numata. The butterfly's wing-pattern variation is controlled by a single region on a single chromosome, containing several genes which control the different elements of the pattern. Known as a 'supergene', this clustering allows genetic combinations that are favoured for their mimetic resemblance to be maintained, while preventing combinations that produce non-mimetic patterns from arising. Supergenes are responsible for a wide range of what we see in nature: from the shape of primrose flowers to the colour and pattern of snail shells.

The researchers found that three versions of the same chromosome coexist in this species, each version controlling distinct wing-pattern forms. This has resulted in butterflies that look completely different from one another, despite having the same DNA.

"We were blown away by what we found," said Dr Mathieu Joron of the Muséum National d'Histoire Naturelle, who led the research. "These butterflies are the 'transformers' of the insect world. But instead of being able to turn from a car into a robot with the flick of switch, a single genetic switch allows these insects to morph into several different mimetic forms -- it is amazing and the stuff of science fiction. Now we are starting to understand how this switch can have such a pervasive effect."

Professor Richard ffrench-Constant of the University of Exeter added: "This phenomenon has puzzled scientists for centuries -- including Darwin himself. Indeed, it was the original observations of mimicry that helped frame the concept of natural selection. Now that we have the right tools we are able to understand the reason for this amazing transformation: by changing just one gene, the butterfly is able to fool its predators by mimicking a range of different butterflies that taste bad."

This single supergene also appears important in melanism in other species, including moths. In April 2011, a team led by Liverpool University explained in the journal Science how the Peppered Moth developed its black wings in nineteenth-century Britain's sooty industrial environment.

"This supergene region not only allows insects to mimic each other, as in Heliconius, but also to mimic the soot blackened background of the industrial revolution -- it's a gene that really packs an evolutionary punch," added Professor Richard ffrench-Constant.

Chromosomal rearrangements maintain a polymorphic supergene controlling butterfly mimicry is published in Nature.


Story Source:

The above story is based on materials provided by University of Exeter. Note: Materials may be edited for content and length.


Journal Reference:

  1. Mathieu Joron, Lise Frezal, Robert T. Jones, Nicola L. Chamberlain, Siu F. Lee, Christoph R. Haag, Annabel Whibley, Michel Becuwe, Simon W. Baxter, Laura Ferguson, Paul A. Wilkinson, Camilo Salazar, Claire Davidson, Richard Clark, Michael A. Quail, Helen Beasley, Rebecca Glithero, Christine Lloyd, Sarah Sims, Matthew C. Jones, Jane Rogers, Chris D. Jiggins, Richard H. ffrench-Constant. Chromosomal rearrangements maintain a polymorphic supergene controlling butterfly mimicry. Nature, 2011; DOI: 10.1038/nature10341

Cite This Page:

University of Exeter. "How butterflies copy their neighbors to fool birds." ScienceDaily. ScienceDaily, 15 August 2011. <www.sciencedaily.com/releases/2011/08/110814141410.htm>.
University of Exeter. (2011, August 15). How butterflies copy their neighbors to fool birds. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2011/08/110814141410.htm
University of Exeter. "How butterflies copy their neighbors to fool birds." ScienceDaily. www.sciencedaily.com/releases/2011/08/110814141410.htm (accessed October 31, 2014).

Share This



More Plants & Animals News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How A Chorus Led Scientists To A New Frog Species

How A Chorus Led Scientists To A New Frog Species

Newsy (Oct. 30, 2014) — A frog noticed by a conservationist on New York's Staten Island has been confirmed as a new species after extensive study and genetic testing. Video provided by Newsy
Powered by NewsLook.com
Surfer Accidentally Stands on Shark, Gets Bitten

Surfer Accidentally Stands on Shark, Gets Bitten

AP (Oct. 30, 2014) — A 20-year-old competition surfer said on Thursday he accidentally stepped on a shark's head before it bit him off the Australian east coast. (Oct. 30) Video provided by AP
Powered by NewsLook.com
Ebola Inflicts Heavy Toll on Guinean Potato Trade

Ebola Inflicts Heavy Toll on Guinean Potato Trade

AFP (Oct. 30, 2014) — The Ebola epidemic has seen Senegal and Guinea Bissau close its borders with Guinea and the economic consequences have started to be felt, especially in Fouta Djallon, where the renowned potato industry has been hit hard. Duration: 02:01 Video provided by AFP
Powered by NewsLook.com
Genetically Altered Glowing Flower on Display in Tokyo

Genetically Altered Glowing Flower on Display in Tokyo

Reuters - Innovations Video Online (Oct. 30, 2014) — Just in time for Halloween, a glowing flower goes on display in Tokyo. Instead of sorcery and magic, its creators used science to genetically modify the flower, adding a naturally fluorescent plankton protein to its genetic mix. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins