Featured Research

from universities, journals, and other organizations

Modeling melanocyte differentiation in zebrafish

Date:
September 1, 2011
Source:
Public Library of Science
Summary:
Researchers have combined genetic data with mathematical modeling to provide insights into cells and how they differentiate. The findings demonstrate the utility of a systems biology approach and could have implications for understanding and treating diseases, including cancers, caused when cells start to function incorrectly.

Researchers at the University of Bath have combined genetic data with mathematical modelling to provide insights into cells and how they differentiate. The findings, to be published in open-access journal PLoS Genetics on September 1st, demonstrate the utility of a systems biology approach and could have implications for understanding and treating diseases, including cancers, caused when cells start to function incorrectly.

Related Articles


All cells derive from multipotent precursor cells (stem cells). The mechanisms by which stably differentiated cell-types are generated from stem cells are important to the understanding of normal development. Little is known, however, about how the switch of a stem cell to a stably differentiated state is regulated. It is likely that destabilisation of such transitions in human skin cells (melanocytes) are factors in initiating melanoma.

The research team, led by Dr. Robert Kelsh, used the model organism zebrafish to explore in vivo the gene regulatory network (GRN) that governs melanocyte differentiation. "We used our genetic data to draw an initial diagram and then applied mathematical modelling to it to assess the mathematical predictions of that diagram," explains Dr. Kelsh. "We then used existing and new experimental data to test those predictions; where necessary, we rethought our understanding of the cell and redrew the diagram. We went through this process three times, creating a more accurate picture of the cell each time." The iterative process enabled a rigorous, methodical exploration of the core melanocyte GRN, allowing the researchers to predict and subsequently validate experimentally two novel features of the GRN.

Through understanding exactly what changes take place in melanocyte development in healthy tissue and during the onset of diseases such as melanoma, scientists can work towards developing methods for potentially reversing or preventing these changes, and halting the progression of the disease.

Dr Kelsh said: "This research is an on-going collaboration between mathematical modellers and biologists. We are now looking in more detail at the core of the cell model we have come up with, and are hoping to extend the research and further develop this combined-approach technique."


Story Source:

The above story is based on materials provided by Public Library of Science. Note: Materials may be edited for content and length.


Journal Reference:

  1. Emma R. Greenhill, Andrea Rocco, Laura Vibert, Masataka Nikaido, Robert N. Kelsh. An Iterative Genetic and Dynamical Modelling Approach Identifies Novel Features of the Gene Regulatory Network Underlying Melanocyte Development. PLoS Genetics, 2011; 7 (9): e1002265 DOI: 10.1371/journal.pgen.1002265

Cite This Page:

Public Library of Science. "Modeling melanocyte differentiation in zebrafish." ScienceDaily. ScienceDaily, 1 September 2011. <www.sciencedaily.com/releases/2011/09/110901171248.htm>.
Public Library of Science. (2011, September 1). Modeling melanocyte differentiation in zebrafish. ScienceDaily. Retrieved April 18, 2015 from www.sciencedaily.com/releases/2011/09/110901171248.htm
Public Library of Science. "Modeling melanocyte differentiation in zebrafish." ScienceDaily. www.sciencedaily.com/releases/2011/09/110901171248.htm (accessed April 18, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Saturday, April 18, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Un-Bee-Lievable: Bees on the Loose After Washington Truck Crash

Un-Bee-Lievable: Bees on the Loose After Washington Truck Crash

Reuters - US Online Video (Apr. 17, 2015) A truck carrying honey bees overturns near Lynnwood, Washington, spreading boxes of live bees across the highway. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Our Love Of Puppy Dog Eyes Explained By Science

Our Love Of Puppy Dog Eyes Explained By Science

Newsy (Apr. 17, 2015) Researchers found a spike in oxytocin occurs in both humans and dogs when they gaze into each other&apos;s eyes. Video provided by Newsy
Powered by NewsLook.com
Dog Flu Spreading in Midwestern States

Dog Flu Spreading in Midwestern States

AP (Apr. 17, 2015) Dog flu is spreading in several Midwestern states. Dog daycare centers and veterinary offices are taking precautions. (April 17) Video provided by AP
Powered by NewsLook.com
Raw: Rare Whale Spotted in Gulf of Mexico

Raw: Rare Whale Spotted in Gulf of Mexico

AP (Apr. 17, 2015) Researchers from the E/V Nautilus had quite a surprise Tuesday, when a curious sperm whale swam around their remotely operated vehicle in the Gulf of Mexico. Cameras captured the encounter. (April 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins