Featured Research

from universities, journals, and other organizations

Novel method for increasing antibiotic yields

Date:
September 5, 2011
Source:
Norwich BioScience Institutes
Summary:
A novel way of increasing the amounts of antibiotics produced by bacteria has been discovered that could markedly improve the yields of these important compounds in commercial production. It could also be valuable in helping to discover new compounds. With the ever-growing threat from antibiotic resistance, these tools will be very useful in ensuring that we have enough of these useful compounds in the future.

A novel way of increasing the amounts of antibiotics produced by bacteria has been discovered that could markedly improve the yields of these important compounds in commercial production. It could also be valuable in helping to discover new compounds. With the ever-growing threat from antibiotic resistance, these tools will be very useful in ensuring that we have enough of these useful compounds in the future.

Related Articles


The majority of antibiotics we know of today are produced naturally by a group of soil bacteria called Streptomyces. For commercial production of these antibiotics for clinical use, it is necessary to increase the yield. This has typically been achieved by randomly inducing mutations and screening for strains that show increased production, a process that takes many years. When technology had progressed sufficiently to analyse how this had been achieved scientists found that, in some cases, the increase in yield was due to repeated copies of the genes needed for antibiotic production.

In almost all cases, the genes needed to produce these antibiotics are clustered together in the bacterial genome. In work carried out initially at the John Innes Centre, which is strategically funded by the Biotechnology and Biological Sciences Research Council, Professor Mervyn Bibb and collaborator Dr Koji Yanai from a Japanse laboratory discovered 36 repeating copies of one gene cluster in a strain of Streptomyces that had been repeatedly selected to over-produce the antibiotic kanamycin.

"This suggested to us that controlled and stable amplification of antibiotic gene clusters might be possible, and that if it was, it would be a valuable tool for engineering high yielding commercial strains of bacteria," said Prof Bibb. The researchers then went on to identify the components within Streptomyces responsible for creating the 36 repeating clusters that led to kanamycin overproduction. These consist of two DNA sequences that flank the gene cluster, and a protein, known as ZouA, that recognises the two sequences and replicates them.

In research to be published in the Proceedings of the National Academy of Sciences, Prof Bibb and colleagues Dr Takeshi Murakami and Prof Charles Thompson, working at the University of British Columbia, together with the same Japanese pharmaceutical laboratory, describe a system for the targeted amplification of gene clusters. The researchers were able to engineer these components into genetic 'cassettes' and then insert these into another strain of Streptomyces. They successfully used the system to make Streptomyces coelicolor overproduce actinorhodin, a blue-pigmented antibiotic. They believe the system will work equally as well for many other Streptomyces strains and antibiotics, and have also shown that it functions in an unrelated bacterium, Escherichia coli.

The system may also uncover new, undiscovered antibiotics. A number of Streptomyces species have had their entire genomes sequenced, and many more are expected. Researchers have been able to identify other gene clusters within these sequences with unknown products. It is likely that many of these 'cryptic' gene clusters produce potentially new antibiotics, but at an undetectable level, or only under specific environmental conditions. Using the gene cluster amplification system identified here, it will be possible to amplify these cryptic gene clusters, identify their products, and potentially discover new antibiotics for the battle against resistant superbugs.


Story Source:

The above story is based on materials provided by Norwich BioScience Institutes. Note: Materials may be edited for content and length.


Journal Reference:

  1. Murakami et al. A novel system for the amplification of bacterial gene clusters multiplies antibiotic yield in Streptomyces coelicolor. Proceedings of the National Academy of Sciences, 2011; DOI: 10.1073/pnas.1108124108

Cite This Page:

Norwich BioScience Institutes. "Novel method for increasing antibiotic yields." ScienceDaily. ScienceDaily, 5 September 2011. <www.sciencedaily.com/releases/2011/09/110905160907.htm>.
Norwich BioScience Institutes. (2011, September 5). Novel method for increasing antibiotic yields. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2011/09/110905160907.htm
Norwich BioScience Institutes. "Novel method for increasing antibiotic yields." ScienceDaily. www.sciencedaily.com/releases/2011/09/110905160907.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Research on Bats Could Help Develop Drugs Against Ebola

Research on Bats Could Help Develop Drugs Against Ebola

AFP (Nov. 28, 2014) In Africa's only biosafety level 4 laboratory, scientists have been carrying out experiments on bats to understand how virus like Ebola are being transmitted, and how some of them resist to it. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
New Dinosaur Species Found in Museum Collection

New Dinosaur Species Found in Museum Collection

Reuters - Innovations Video Online (Nov. 27, 2014) A British palaeontologist has discovered a new species of dinosaur while studying fossils in a Canadian museum. Pentaceratops aquilonius was related to Triceratops and lived at the end of the Cretaceous Period, around 75 million years ago. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Tryptophan Isn't Making You Sleepy On Thanksgiving

Tryptophan Isn't Making You Sleepy On Thanksgiving

Newsy (Nov. 27, 2014) Tryptophan, a chemical found naturally in turkey meat, gets blamed for sleepiness after Thanksgiving meals. But science points to other culprits. Video provided by Newsy
Powered by NewsLook.com
Classic Hollywood Memorabilia Goes Under the Hammer

Classic Hollywood Memorabilia Goes Under the Hammer

Reuters - Entertainment Video Online (Nov. 26, 2014) The iconic piano from "Casablanca" and the Cowardly Lion suit from "The Wizard of Oz" fetch millions at auction. Sara Hemrajani reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins