Featured Research

from universities, journals, and other organizations

Vectors of bluetongue get a name

Date:
October 6, 2011
Source:
Institute of Tropical Medicine Antwerp
Summary:
Scientists of the Antwerp Institute of Tropical Medicine (ITG) have developed a molecular technique to easily and dependably identify the biting midges that spread bluetongue disease. Until know this identification was a problem. The technology helps to understand how the disease spreads, and how to control it. They report in the journal Medical and Veterinary Entomology.

No-see-ums are really small. In this picture, one is compared to the common mosquito.
Credit: ITG

Scientists of the Antwerp Institute of Tropical Medicine (ITG) have developed a molecular technique to easily and dependably identify the biting midges that spread bluetongue disease. Until now this identification was a problem. The technology helps researchers to understand how the disease spreads, and how to control it.

Related Articles


They report in the journal Medical and Veterinary Entomology.

Bluetongue primarily affects sheep, but also cattle and other ruminants to a lesser extent. It is not dangerous to people, but it causes great economical damage. Until a few years ago, the disease had not hit northern Europe. People assumed only tropical midges could transfer the responsible virus. But in 2006 The Netherlands and Belgium were hit. Once the virus was present, local midges were shown to be capable of transmitting it.

There are a lot of species called 'biting midge' (Cullicoides to biologists), and with classical tools it is almost unfeasible to differentiate them -- there is a reason why they are popularly called no-see-ums. You have to put them under a microscope and measure minuscule details like the dimensions of the genitals.

But if you don't know which midges transmit the disease, you don't know where it will spread, nor where you have to fight the midges. And if you want your pest control to be efficient and ecologically sound, you'll have to know who's the enemy, and who isn't.

So the ITG researchers developed a simple and cheap molecular identification technology that identifies Cullicoides species in the lab with 100% certainty. They concentrated on the most important species in northern Europe, Culicoides obsoletus, C. scoticus, C. chiopterus and C. dewulfi, but they can reliably identify more than twenty species. Tests on larvae are very promising. Until now there is no way to differentiate larvae.

The scientists produced a 'gene chip' or micro-array, a glass slide to which short pieces of DNA are attached, that are characteristic for each species. It takes quite some searching in the DNA to find those characteristic stretches, but once you have found them (in this case the ITS1 gene was used), you can attach them one next to the other on a glass slide. Such a slide can contain several dozens of different pieces of DNA, on well documented positions. When you wash the gene chip with DNA from an unknown no-see-um -- getting that DNA is a routine job these days -- identical pieces of DNA will stick to each other. This causes a blue colour reaction at that spot. With the naked eye one can recognise the characteristic pattern of spots for each species.

Contrary to other molecular identification tests, this one is very specific, and able to recognise several species at the same time. It certainly helps to determinate midges that are difficult to recognise under the microscope. And it works. When the French CIRAD (Centre for International cooperation and Research for Agronomy and Development) sent out a ring test to see which labs could identify four species of biting midges with molecular methods, ITG was the only institute to identify all samples correctly, three times in a row.


Story Source:

The above story is based on materials provided by Institute of Tropical Medicine Antwerp. Note: Materials may be edited for content and length.


Journal Reference:

  1. I. Deblauwe, J. C. De Witte, G. De Deken, R. De Deken, M. Madder, S. Van Erk, F. A. Hoza, D. Lathouwers, D. Geysen. A new tool for the molecular identification of Culicoides species of the Obsoletus group: the glass slide microarray approach. Medical and Veterinary Entomology, 2011; DOI: 10.1111/j.1365-2915.2011.00979.x

Cite This Page:

Institute of Tropical Medicine Antwerp. "Vectors of bluetongue get a name." ScienceDaily. ScienceDaily, 6 October 2011. <www.sciencedaily.com/releases/2011/10/111006084237.htm>.
Institute of Tropical Medicine Antwerp. (2011, October 6). Vectors of bluetongue get a name. ScienceDaily. Retrieved January 27, 2015 from www.sciencedaily.com/releases/2011/10/111006084237.htm
Institute of Tropical Medicine Antwerp. "Vectors of bluetongue get a name." ScienceDaily. www.sciencedaily.com/releases/2011/10/111006084237.htm (accessed January 27, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Tuesday, January 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How To: Mixed Green Salad Topped With Camembert Cheese

How To: Mixed Green Salad Topped With Camembert Cheese

Rumble (Jan. 26, 2015) Learn how to make a mixed green salad topped with a pan-seared camembert cheese in only a minute! Music: Courtesy of Audio Network. Video provided by Rumble
Powered by NewsLook.com
Water Fleas Prepare for Space Voyage

Water Fleas Prepare for Space Voyage

Reuters - Innovations Video Online (Jan. 26, 2015) Scientists are preparing a group of water fleas for a unique voyage into space. The aquatic crustaceans, known as Daphnia, can be used as a miniature model for biomedical research, and their reproductive and swimming behaviour will be tested for signs of stress while on board the International Space Station. Jim Drury went to meet the team. Video provided by Reuters
Powered by NewsLook.com
Husky Puppy Plays With Ferret

Husky Puppy Plays With Ferret

Rumble (Jan. 26, 2015) It looks like this 2-month-old Husky puppy and the family ferret are going to be the best of friends. Look at how much fun they&apos;re having together! Credit to &apos;Vira&apos;. Video provided by Rumble
Powered by NewsLook.com
Scientists Model Flying, Walking Drone After Vampire Bats

Scientists Model Flying, Walking Drone After Vampire Bats

Buzz60 (Jan. 26, 2015) Swiss scientists build a new drone that can both fly and walk, modeling it after the movements of common vampire bats. Jen Markham (@jenmarkham) has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

    Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins