Science News
from research organizations

Chromosomal 'breakpoints' linked to canine cancer

Date:
November 3, 2011
Source:
North Carolina State University
Summary:
Researchers have uncovered evidence that evolutionary "breakpoints" on canine chromosomes are also associated with canine cancer. Mapping these "fragile" regions in dogs may also have implications for the discovery and treatment of human cancers.
Share:
       
FULL STORY

North Carolina State University researchers have uncovered evidence that evolutionary "breakpoints" on canine chromosomes are also associated with canine cancer. Mapping these "fragile" regions in dogs may also have implications for the discovery and treatment of human cancers.

When new species evolve, they leave genetic evidence behind in the form of "breakpoint regions." These regions are sites on the genome where chromosomes broke during speciation (when new species of dogs developed). Dr. Matthew Breen, professor of genomics at NC State, and graduate student Shannon Becker looked at the breakpoint regions that occurred when the canid (dog) species differentiated during evolution. They compared the genomes of several wild canine species with those of the domestic dog. By overlaying the genomes, they found shared breakpoints among 11 different canid species -- the so-called evolutionary breakpoints.

"The interesting thing about the breakpoint areas in the canid chromosome is that they are the same regions that we have shown to be associated with chromosome breaks in spontaneously occurring cancers," Breen says. "It is possible that the re-arrangement of chromosomes that occurred when these species diverged from one another created unstable regions on the chromosome, and that is why these regions are associated with cancer."

The researchers' results appear in Chromosome Research.

"As species evolve, genetic information encoded on chromosomes can be restructured -- resulting in closely related species having differently organized genomes," says Becker. "In some cases, species acquire extra chromosomes, called B chromosomes. We looked at these extra B chromosomes in three canid species and found that they harbor several cancer-associated genes. Our work adds to the growing evidence that there is an association between cancer-associated genomic instability and genomic rearrangement during speciation."

"The presence of clusters of cancer- associated genes on canid B chromosomes suggests that while previously though to be inert, these chromosomes may have played a role in sequestering excess copies of such genes that were generated during speciation," adds Breen. "We now need to determine whether these stored genes are active or inert -- that information could give us new tools in cancer detection and treatment."

The research was funded by the Morris Animal Foundation. The Department of Molecular Biomedical Sciences is part of NC State's College of Veterinary Medicine.


Story Source:

The above post is reprinted from materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Shannon E. Duke Becker, Rachael Thomas, Vladimir A. Trifonov, Robert K. Wayne, Alexander S. Graphodatsky, Matthew Breen. Anchoring the dog to its relatives reveals new evolutionary breakpoints across 11 species of the Canidae and provides new clues for the role of B chromosomes. Chromosome Research, 2011; 19 (6): 685 DOI: 10.1007/s10577-011-9233-4

Cite This Page:

North Carolina State University. "Chromosomal 'breakpoints' linked to canine cancer." ScienceDaily. ScienceDaily, 3 November 2011. <www.sciencedaily.com/releases/2011/11/111103132359.htm>.
North Carolina State University. (2011, November 3). Chromosomal 'breakpoints' linked to canine cancer. ScienceDaily. Retrieved August 27, 2015 from www.sciencedaily.com/releases/2011/11/111103132359.htm
North Carolina State University. "Chromosomal 'breakpoints' linked to canine cancer." ScienceDaily. www.sciencedaily.com/releases/2011/11/111103132359.htm (accessed August 27, 2015).

Share This Page: