Featured Research

from universities, journals, and other organizations

Scientists identify potential malaria drug candidates

Date:
November 17, 2011
Source:
NIH/National Institute of Allergy and Infectious Diseases
Summary:
Researchers have discovered a group of chemical compounds that might one day be developed into drugs that can treat malaria infection in both the liver and the bloodstream.

Researchers have discovered a group of chemical compounds that might one day be developed into drugs that can treat malaria infection in both the liver and the bloodstream. The study, which appears in the Nov. 18 issue of Science, was led by Elizabeth A. Winzeler, Ph.D., of the Scripps Research Institute in La Jolla, Calif., and was partially funded by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health.

Related Articles


Caused by four related parasites in the genus Plasmodium, malaria is transmitted to humans via the bite of an infected mosquito. Once the bite occurs, the parasites travel to the liver, where they usually multiply rapidly for about a week without causing symptoms. Symptoms begin when the parasites spread from the liver to the rest of the body through the bloodstream. However, the parasites can lay dormant in the liver for periods ranging from several months to years before an infected person demonstrates symptoms.

Most of the malaria drugs currently in development target the symptomatic, blood stage of infection. To help achieve malaria eradication, however, a drug would ideally treat infection during both the liver and blood stages. Currently, the World Health Organization recommends only one treatment, primaquine, for the initial, liver stage of certain types of malaria infection; however, primaquine and related drugs can cause a dangerous blood disorder among patients with a genetic condition that is common in malaria-endemic regions of the world. Additionally, drug resistance has been reported, which amplifies the need to find new treatment alternatives.

By screening more than 4,000 chemical compounds that had previously shown activity against blood-stage Plasmodium, the investigators searched for a compound that would also inhibit liver-stage parasites and whose protein structure would allow the modification necessary for future drug development. They found that a group of three related compounds, known collectively as the imidazolopiperazine (IP) cluster, fit these criteria. In addition, strains of Plasmodium that had acquired resistance to other malaria drugs were susceptible to the IP cluster.

Using the IP cluster as a foundation, the researchers designed a drug candidate, GNF179, that reduced levels of one Plasmodium species by 99.7 percent and extended survival by an average of 19 days when tested in malaria-infected mice. By examining infected cells, the researchers confirmed that GNF179 was active in the liver stage of infection. The researchers note that while additional studies will be needed to fully understand the drug's mechanism of action and its specific targets within the liver, this study provides a potential starting point for developing new dual-stage antimalarial drugs.


Story Source:

The above story is based on materials provided by NIH/National Institute of Allergy and Infectious Diseases. Note: Materials may be edited for content and length.


Journal Reference:

  1. S Meister et al. Exploring Plasmodium hepatic stages to find next-generation antimalarial drugs. Science, 2011 DOI: 10.1126/science.1211936

Cite This Page:

NIH/National Institute of Allergy and Infectious Diseases. "Scientists identify potential malaria drug candidates." ScienceDaily. ScienceDaily, 17 November 2011. <www.sciencedaily.com/releases/2011/11/111117154637.htm>.
NIH/National Institute of Allergy and Infectious Diseases. (2011, November 17). Scientists identify potential malaria drug candidates. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2011/11/111117154637.htm
NIH/National Institute of Allergy and Infectious Diseases. "Scientists identify potential malaria drug candidates." ScienceDaily. www.sciencedaily.com/releases/2011/11/111117154637.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com
From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Newsy (Nov. 25, 2014) Need another reason to eat yogurt every day? Researchers now say it could reduce a person's risk of developing type 2 diabetes. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

More Coverage


Dual-Acting Class of Antimalarial Compounds Discovered With Potential to Prevent and Treat Malaria

Nov. 17, 2011 The discovery of a new class of dual-acting antimalarial compounds that target both liver and blood infections, attacking the Plasmodium parasite at both stages in its reproduction cycle, to publish. ... read more

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins