Featured Research

from universities, journals, and other organizations

Mutants with heterozygote disadvantage can prevent spread of transgenic animals

Date:
November 21, 2011
Source:
Max-Planck-Gesellschaft
Summary:
Genetically modified animals are designed to contain the spread of pathogens. One prerequisite for the release of such organisms into the environment is that the new gene variant does not spread uncontrollably, suppressing natural populations. Scientists have now established that certain mutations are maintained over an extended period if two separate populations exchange individuals with one another on a small scale.

Simulated release of 13 transgenic individuals in two populations that consist of 25 individuals each, which are connected via migration (horizontal axis: frequency of the mutated gene in population 1; vertical axis: frequency of mutated gene in population. Left: At a migration rate of 1%, both populations behave as desired in release trials: in population 1, the frequency of the mutation very quickly decreases and approaches zero. In population 2, however, there is a high probability that the mutated gene will dominate over the natural gene variant, and this state is maintained for a long time (yellow). As a result, at this migration rate, the time to extinction is very long in both populations. Right: At a migration rate of 10%, the mutation is very likely to be lost in both populations.
Credit: © Phillip M. Altrock/MPI for Evolutionary Biology

Genetically modified animals are designed to contain the spread of pathogens. One prerequisite for the release of such organisms into the environment is that the new gene variant does not spread uncontrollably, suppressing natural populations. Scientists at the Max Planck Institute for Evolutionary Biology in Plön, Germany, have now established that certain mutations are maintained over an extended period if two separate populations exchange individuals with one another on a small scale. The new gene variant may remain confined to one of the two populations. The migration rate between the populations determines how long the new gene variant is expected to survive in the environment.

Related Articles


These new findings may help to achieve greater safety when conducting release experiments involving genetically modified animals.

Genetically modified organisms must not be allowed to spread uncontrollably. Scientists are therefore keen to take advantage of a mechanism that will localise the spread of mutants. Mutants with a heterozygote disadvantage, as it is known, reduce the evolutionary fitness of their carriers to varying degrees if they are only available to one gene copy (heterozygote) or exist in both gene copies (homozygote). In their study, the Max Planck scientists assumed a fitness loss of 50 percent (compared to wildtypes) for mutant heterozygotes and a 10 percent fitness loss for mutant homozygotes.

A mutant with a heterozygote disadvantage can be maintained in a population if it occurs frequently enough for sufficient homozygote offspring to be produced. Above this value, it can suppress the non-mutated gene variant completely and the mutated form becomes extinct. Populations containing mutants with heterozygote disadvantage develop into one of two stable states. These mutant types therefore seem to be well-suited for the safe release of genetically modified organisms. After all, as soon as sufficient numbers of mutants exist in the environment, these replace the natural variant in a local population. If such genes are joined to resistance genes to combat pathogens, mosquito populations could be rendered resistant to Malaria, for example. By releasing the wildtype at a later stage, the transgenic animals can therefore also be removed again more easily from the environment. In population genetics this is known as underdominance.

The researchers then analyzed computer-based simulations showing the effect of mutants with heterozygote disadvantage on two populations of equal size, which, as in nature, are subject to statistical fluctuations. In doing so, they paid particular attention to the gene flow arising from the mobility of the individuals. At times, such a mutation can survive in a stable state in a population. However, this only happens if the migration rate is less than 5 percent. "Our calculations have also shown that mutants are best released into both populations even if the goal is to establish the new genetic variant in only one of them in the long term. If, for example, 75 percent of transgenic animals are distributed to the target population and the remaining 25 percent to a neighbouring population, the transgenic individuals may find it easier to gain traction on a long-term basis in the target population," explains Philipp Altrock from the Max Planck Institute for Evolutionary Biology.

Scientists in the USA, Brazil, Malaysia and the Cayman Islands have been conducting field experiments on the use of genetically modified animals for several years. These include, for example, experiments involving genetically modified mosquitoes, to protect against infectious diseases such as malaria or dengue fever, and transgenic plant pests. Similar experiments are planned in another nine countries. To date, the males from various insect species, which are generally infertile, are released. In this way, the effective size of the wild population is limited. "One of the disadvantages of this method is that it needs to be repeated very frequently as the transgenic animals cannot reproduce," says Arne Traulsen from the Max Planck Institute in Plön. In addition, in the case of mosquitoes, a few parent individuals can already have a large share of the next generation.

In contrast, mutants with heterozygote disadvantage can survive for many generations. Resistance genes linked to such mutants would therefore be more efficient. The safety aspect also increases, as proliferation across a target population is very unlikely. "Nevertheless, the fitness of the transgenic animals, the population sizes, and the migration rates must be known. These factors can most likely be determined for release experiments on maritime islands," says Arne Traulsen.


Story Source:

The above story is based on materials provided by Max-Planck-Gesellschaft. Note: Materials may be edited for content and length.


Journal Reference:

  1. Philipp M. Altrock, Arne Traulsen, Floyd A. Reed. Stability Properties of Underdominance in Finite Subdivided Populations. PLoS Computational Biology, 2011; 7 (11): e1002260 DOI: 10.1371/journal.pcbi.1002260

Cite This Page:

Max-Planck-Gesellschaft. "Mutants with heterozygote disadvantage can prevent spread of transgenic animals." ScienceDaily. ScienceDaily, 21 November 2011. <www.sciencedaily.com/releases/2011/11/111121114757.htm>.
Max-Planck-Gesellschaft. (2011, November 21). Mutants with heterozygote disadvantage can prevent spread of transgenic animals. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2011/11/111121114757.htm
Max-Planck-Gesellschaft. "Mutants with heterozygote disadvantage can prevent spread of transgenic animals." ScienceDaily. www.sciencedaily.com/releases/2011/11/111121114757.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) — In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) — The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) — As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
Dads-To-Be Also Experience Hormone Changes During Pregnancy

Dads-To-Be Also Experience Hormone Changes During Pregnancy

Newsy (Dec. 18, 2014) — A study from University of Michigan researchers found that expectant fathers see a decrease in testosterone as the baby's birth draws near. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins