Featured Research

from universities, journals, and other organizations

Researchers identify key plant immune response in fight against bacteria

Date:
December 8, 2011
Source:
University of Missouri-Columbia
Summary:
Researchers have found a key process in a plant's immune system response that may help future crops fight off dangerous diseases.

Researchers at the University of Missouri have found a key process in a plant's immune system response that may help future crops fight off dangerous diseases.

"We study how Arabidopsis, a common weed related to the mustard plant, fends off infectious agents," said Walter Gassmann, professor of plant sciences and researcher for the Christopher S. Bond Life Sciences Center and Interdisciplinary Plant Group. "We have discovered that a protein within the plant known as Enhanced Disease Susceptibility 1 (EDS1) not only plays a key role in the plant's defense but also contributes to the direct recognition of disease agents. Arabidopsis has a widely known genetic structure, and its bacterial pathogens share many tactics with other pathogens such as fungal rusts and mildews. So, if we can translate Arabidopsis' immune response to other plants, we could eventually help crops, such as soybeans, resist devastating infections."

Gassmann compares plant and pathogen interactions to warfare. For example, bacterial speck targets "communication hubs" of the plant immune system to suppress the plant's immune system response long enough to invade and cause disease in tomato and Arabidopsis plant tissue. The present study identified EDS1 as one such hub under attack. Meanwhile, in resistant plants, immune receptors that act as sentinels guarding EDS1 detect the invader's attack and trigger an alarm that leads to a vigorous plant defense response. Gassmann believes that further studies on EDS1 and its sentinels could determine how to add the alarm response to plants missing the protein or amplify the response in plants that have the protein.

"Farmers know that deploying plants with single sentinels, which commonly only detect a single specific attack strategy, only leads to a boom and bust cycle for disease resistant crop plants," Gassmann said. "Farmers are now to the point where in a crop they must stagger multiple sentinels against each pathogen in order to keep plant diseases from spreading. If we can identify the actual targets in the plant, like EDS1, and manipulate these genes in key crops, we could extend the planting cycles for a longer period of time. We're still a long way from application in the field; however, this addition could ultimately produce more food."

While genetically modified plants still cause controversy, Gassmann believes that assisting plants with disease resistance derived from nature is better than the use of fungicides. Gassmann also studies how grape production could be improved by using genes from the Missouri Norton grape, which resists powdery mildew, in an effort to alleviate chemical use.

"If we understand the deeper level of plant immunity, we can develop a smarter way of breeding plants that are generally resistant to devastating diseases," Gassmann said.

Gassmann's paper, "Pathogen effectors target Arabidopsis EDS1 and alter its interactions with immune regulators," has been accepted by the journal Science. Co-authors at the University of Missouri include post-doctoral researchers Saikat Bhattacharjee and Sang Hee Kim, who has since moved to Indiana University, and undergraduate researcher Morgan Halane from Sedalia, Mo. The study was funded by the National Science Foundation.


Story Source:

The above story is based on materials provided by University of Missouri-Columbia. Note: Materials may be edited for content and length.


Journal Reference:

  1. S. Bhattacharjee, M. K. Halane, S. H. Kim, W. Gassmann. Pathogen Effectors Target Arabidopsis EDS1 and Alter Its Interactions with Immune Regulators. Science, 2011; 334 (6061): 1405 DOI: 10.1126/science.1211592

Cite This Page:

University of Missouri-Columbia. "Researchers identify key plant immune response in fight against bacteria." ScienceDaily. ScienceDaily, 8 December 2011. <www.sciencedaily.com/releases/2011/12/111208141937.htm>.
University of Missouri-Columbia. (2011, December 8). Researchers identify key plant immune response in fight against bacteria. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2011/12/111208141937.htm
University of Missouri-Columbia. "Researchers identify key plant immune response in fight against bacteria." ScienceDaily. www.sciencedaily.com/releases/2011/12/111208141937.htm (accessed April 18, 2014).

Share This



More Plants & Animals News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Great British Farmland Boom

The Great British Farmland Boom

Reuters - Business Video Online (Apr. 17, 2014) Britain's troubled Co-operative Group is preparing to cash in on nearly 18,000 acres of farmland in one of the biggest UK land sales in decades. As Ivor Bennett reports, the market timing couldn't be better, with farmland prices soaring over 270 percent in the last 10 years. Video provided by Reuters
Powered by NewsLook.com
Flamingo Frenzy Ahead of Zoo Construction

Flamingo Frenzy Ahead of Zoo Construction

AP (Apr. 17, 2014) With plenty of honking, flapping, and fluttering, more than three dozen Caribbean flamingos at Zoo Miami were rounded up today as the iconic exhibit was closed for renovations. (April 17) Video provided by AP
Powered by NewsLook.com
Change of Diet Helps Crocodile Business

Change of Diet Helps Crocodile Business

Reuters - Business Video Online (Apr. 16, 2014) Crocodile farming has been a challenge in Zimbabwe in recent years do the economic collapse and the financial crisis. But as Ciara Sutton reports one of Europe's biggest suppliers of skins to the luxury market has come up with an unusual survival strategy - vegetarian food. Video provided by Reuters
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins