Featured Research

from universities, journals, and other organizations

Model shows how façade pollutants make it into the environment

Date:
December 9, 2011
Source:
Ecole Polytechnique Fédérale de Lausanne
Summary:
Anti-fungal and anti-bacterial additives in house paint are present in dangerous quantities in the Vauchère river basin in the city of Lausanne, says a new study. Chemicals engineered to kill microorganisms, called biocides, are added to exterior paints in order to prevent molding and plant growth and are washed off of building facades during heavy rains.

Peak concentrations of biocides from house paint prove prevalent in urban river basins.

Anti-fungal and anti-bacterial additives in house paint are present in dangerous quantities in the Vauchère river basin in the city of Lausanne, says a study to be presented the 9th of December, at the American Geophysical Union (AGU) conference in San Francisco. Chemicals engineered to kill microorganisms, called biocides, are added to exterior paints in order to prevent molding and plant growth. Washed off of building facades during heavy rains, however, these chemicals can be wind up in soil, groundwater and river basins where they attack bacteria, fungi and algae at the bottom of the food chain. Researchers at EPFL's Ecological Engineering Laboratory have now modeled the flow of biocides from building façades into river basins with surprising accuracy, which could lead to stricter regulations for Switzerland and abroad.

In Switzerland, biocides are present in exterior paint on some 60% of buildings and they are common worldwide. The global demand on all biocides for use in industrial and consumer goods was estimated at US$6.4 billion in 2008. Certain antifouling biocides have been phased out of use on boat hulls after being proven toxic to marine life.

The mathematical tool developed by Sylvain Coutu at EPFL accurately predicts peak concentration levels in a local river of three biocides commonly found in industrial paint: DCMU, Terbutryn and Carbendazim. Coutu predicted the concentration of these biocides after four rainstorms during the spring of 2011 and compared the numbers to actual measurements taken from the river. The model proved accurate up to a couple of nanograms per liter, an impressive feat considering the variety and complexity of variables. The model's strength comes from its delicate balance between the simplification of urban surface hydraulic behaviors -- how water is channeled down streets and gutters compared to lawns and gardens -- and the necessity for extreme accuracy.

"A true toxicology report should include these peaks, and we have created the first model that takes them into account over a period of time," says Coutu.

Establishing a working model has the advantage of reproducibility as well as reducing dependency on expensive testing. Once a reliable model has been created it can be used in other regions, although the model needs to be adapted to the specific geography, for example the surface area of contaminated façades as well as the quick water drainage of urban surfaces. Once the input is determined and the dynamics of the hazardous substances reacting to rainfall are worked out, it is possible to estimate the concentrations of these substances to see if they exceed acceptable levels.

The biocides that reached the river basin in Switzerland did so in extremely small concentrations -- 30 nanograms per liter, or 30 parts per trillion, of the chemical DCMU were present after heavy rains. DCMU is a common herbicide and algicide developed in the 1950s in Germany and the threshold concentration after which this substance is considered a threat for the environment is 20 nanograms per liter. DCMU is considered harmful and can potentially kill algae and other plantlife by inhibiting photosynthesis and thus depriving the organisms of energy. Biocides in general do not degrade easily, thus increasing their risk of moving up the food chain and making their way, in higher and higher concentrations, throughout the environment.

"While it may seem like a very small concentration, 20 nanograms is all that is needed to have an impact on the ecosystem since these chemicals are engineered to kill at very low doses," explains Coutu. Furthermore, the study also proves that water behavior in urban environments can be accurately modeled, opening the door to further toxicology studies for city ecosystems.


Story Source:

The above story is based on materials provided by Ecole Polytechnique Fédérale de Lausanne. Note: Materials may be edited for content and length.


Cite This Page:

Ecole Polytechnique Fédérale de Lausanne. "Model shows how façade pollutants make it into the environment." ScienceDaily. ScienceDaily, 9 December 2011. <www.sciencedaily.com/releases/2011/12/111209150150.htm>.
Ecole Polytechnique Fédérale de Lausanne. (2011, December 9). Model shows how façade pollutants make it into the environment. ScienceDaily. Retrieved August 29, 2014 from www.sciencedaily.com/releases/2011/12/111209150150.htm
Ecole Polytechnique Fédérale de Lausanne. "Model shows how façade pollutants make it into the environment." ScienceDaily. www.sciencedaily.com/releases/2011/12/111209150150.htm (accessed August 29, 2014).

Share This




More Earth & Climate News

Friday, August 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Volcano Erupts on Papua New Guinea

Raw: Volcano Erupts on Papua New Guinea

AP (Aug. 29, 2014) — Several communities were evacuated and some international flights were diverted on Friday after one of the most active volcanos in the region erupts. (Aug. 29) Video provided by AP
Powered by NewsLook.com
Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) — State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com
Scientists Have Figured Out Why Rocks Move In Death Valley

Scientists Have Figured Out Why Rocks Move In Death Valley

Newsy (Aug. 28, 2014) — The mystery of the moving rocks in Death Valley, California, has finally been solved. Scientists are pointing to a combo of water, ice and wind. Video provided by Newsy
Powered by NewsLook.com
Big Waves, Minor Flooding from Hurricane

Big Waves, Minor Flooding from Hurricane

AP (Aug. 27, 2014) — Thundering surf spawned by Hurricane Marie pounded the Southern California coast Wednesday, causing minor flooding in a low-lying beach town. High surf warnings were posted for Los Angeles County south through Orange County. (Aug. 27) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins