Featured Research

from universities, journals, and other organizations

Ironing out details of Earth's core: Researchers obtain highest-pressure vibrational spectrum of iron

Date:
December 21, 2011
Source:
California Institute of Technology
Summary:
Identifying the composition of Earth's core is key to understanding how our planet formed and the current behavior of its interior. While it has been known for many years that iron is the main element in the core, many questions have remained about just how iron behaves under the conditions found deep in the earth. Now, a team led by mineral-physics researchers has homed in on those behaviors by conducting extremely high-pressure experiments on the element.

The vibrational spectrum of iron, the most abundant element in Earth's core, at 171 gigapascals. By squeezing iron between two diamond anvils (inset), Caltech researchers reproduced the pressures found in Earth's core.
Credit: Caitlin A. Murphy/Caltech

Identifying the composition of Earth's core is key to understanding how our planet formed and the current behavior of its interior. While it has been known for many years that iron is the main element in the core, many questions have remained about just how iron behaves under the conditions found deep inside Earth. Now, a team led by mineral-physics researchers at the California Institute of Technology (Caltech) has honed in on those behaviors by conducting extremely high-pressure experiments on the element.

Related Articles


"Pinpointing the properties of iron is the gold standard -- or I guess 'iron standard' -- for how the core behaves," says Jennifer Jackson, assistant professor of mineral physics at Caltech and coauthor of the study, which appears in the December 20 issue of Geophysical Research Letters. "That is where most discussions about the deep interior of the Earth begin. The temperature distribution, the formation of the planet -- it all goes back to the core."

To learn more about how iron behaves under the extreme conditions that exist in Earth's core, the team used diamond anvil cells (DAC) to compress tiny samples of the element. The DACs use two small diamonds to squeeze the iron, reproducing the types of pressures felt in Earth's core. These particular samples were pressurized to 171 Gigapascals, which is 1.7 million times the pressure we feel on the surface of Earth.

To complete the experiments, the team took the DACs to the Advanced Photon Source at Argonne National Laboratory in Illinois, where they were able to use powerful X-rays to measure the vibrational density of states of compressed iron. This information allows the researchers to determine how quickly sound waves move through iron and compare the results to seismic observations of the core.

"The vibrational properties that we were able to measure at extraordinarily high pressures are unprecedented," says Jackson. "These pressures exist in the Earth's outer core, and are very difficult to reproduce experimentally."

Caitlin Murphy, a graduate student in Jackson's group and first author of the paper, says the group was happy to find that their data set on the vibrational properties of iron evolved smoothly over a very wide pressure range, suggesting that their pressure-dependent analysis was robust, and that iron did not encounter any phase changes over this pressure range. To help achieve these successful measurements at high pressures, the group used some innovative techniques to keep the iron from thinning out in the DACs, such as preparing an insert to stabilize the sample chamber during compression. Additionally, they measured the volume of the compressed iron sample in situ and hydrostatically loaded the iron sample with neon into the sample chamber.

"These techniques allowed us to get the very high statistical quality we wanted in a reasonable amount of time, thus allowing us to obtain accurate vibrational properties of compressed iron, such as its Grüneisen parameter," says Jackson. "The Grüneisen parameter of a material describes how its total energy changes with compression and informs us on how iron may behave in the Earth's core. It is an extremely difficult quantity to measure accurately."

The team was also able to get a closer estimate of the melting point of iron from their experiments -- which they report to be around 5800 Kelvin at the boundary between Earth's solid inner core and liquid outer core. This information, combined with the other vibrational properties they found, gives the group important clues for estimating the amount of light elements, or impurities, in the core. By comparing the density of iron at the relevant pressure and temperature conditions with seismic observations of the core's density, they found that iron is 5.5 percent more dense than the solid inner core at this boundary.

"With our new data on iron, we can discuss several aspects of the Earth's core with more certainty and narrow down the amount of light elements that may be needed to help power the geodynamo -- the process responsible for maintaining the Earth's magnetic field, which originates in the core," says Jackson.

According to Murphy, the next step is to perform similar experiments alloying iron with nickel and various light elements to determine how the density and, in particular, the vibrational properties of pure iron are affected. In turn, they will be able to evaluate the amount of light elements that produce a closer match to seismic observations of the core.

"There are a few candidate light elements for the core that everyone is always talking about -- sulfur, silicon, oxygen, carbon, and hydrogen, for instance," says Murphy. "Silicon and oxygen are a few of the more popular, but they have not been studied in this great of detail yet. So that's where we will begin to expand our study."

The study was funded by the California Institute of Technology, the National Science Foundation, and the U.S. Department of Energy. Bin Chen, a former postdoctoral scholar in Jackson's lab, and Wolfgang Sturhahn, senior technologist at NASA's Jet Propulsion Laboratory and visiting associate at Caltech, were also coauthors on the paper.


Story Source:

The above story is based on materials provided by California Institute of Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Caitlin A. Murphy, Jennifer M. Jackson, Wolfgang Sturhahn, Bin Chen. Grüneisen parameter of hcp-Fe to 171 GPa. Geophysical Research Letters, 2011; 38 (24) DOI: 10.1029/2011GL049531

Cite This Page:

California Institute of Technology. "Ironing out details of Earth's core: Researchers obtain highest-pressure vibrational spectrum of iron." ScienceDaily. ScienceDaily, 21 December 2011. <www.sciencedaily.com/releases/2011/12/111220102530.htm>.
California Institute of Technology. (2011, December 21). Ironing out details of Earth's core: Researchers obtain highest-pressure vibrational spectrum of iron. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2011/12/111220102530.htm
California Institute of Technology. "Ironing out details of Earth's core: Researchers obtain highest-pressure vibrational spectrum of iron." ScienceDaily. www.sciencedaily.com/releases/2011/12/111220102530.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Lava on Track to Hit Hawaii Market

Raw: Lava on Track to Hit Hawaii Market

AP (Dec. 19, 2014) — Lava from an active volcano on Hawaii's Big Island slowed slightly but stayed on track to hit a shopping center in the small town of Pahoa. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) — A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) — The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Arctic Warming Twice As Fast As Rest Of Planet

Arctic Warming Twice As Fast As Rest Of Planet

Newsy (Dec. 18, 2014) — The Arctic is warming twice as fast as the rest of the planet, thanks in part to something called feedback. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins