Featured Research

from universities, journals, and other organizations

New study sheds light on evolutionary origin of oxygen-based cellular respiration

Date:
January 24, 2012
Source:
RIKEN
Summary:
Researchers in Japan have clarified the crystal structure of quinol dependent nitric oxide reductase (qNOR), a bacterial enzyme that offers clues on the origins of our earliest oxygen-breathing ancestors. In addition to their importance to fundamental science, the findings provide key insights into the production of nitrogen oxide, an ozone-depleting and greenhouse gas hundreds of times more potent than carbon dioxide.

Comparison of the overall structures of the respiration enzymes. (A) qNOR, (B) cNOR, and (C) COX. These enzymes share similar structure of the core region shown with rainbow color. Each catalytic site denoted by black dotted line contains heme molecule shown as a red stick.
Credit: RIKEN

Researchers at the RIKEN SPring-8 Center in Harima, Japan have clarified the crystal structure of quinol dependent nitric oxide reductase (qNOR), a bacterial enzyme that offers clues on the origins of our earliest oxygen-breathing ancestors. In addition to their importance to fundamental science, the findings provide key insights into the production of nitrogen oxide, an ozone-depleting and greenhouse gas hundreds of times more potent than carbon dioxide.

Related Articles


As the central process by which cells capture and store the chemical energy they need to survive, cellular respiration is essential to all life on this planet. While most of us are familiar with one form of respiration, whereby oxygen is used to transform nutrients into molecules of adenosine triphosphate (ATP) for use as energy ("aerobic respiration"), many of the world's organisms breathe in a different way. At the bottom of the ocean and in other places with no oxygen, organisms get their energy instead using substances such as nitrate or sulfur to synthesize ATP, much the way organisms did many billions of years ago ("anaerobic respiration").

While less well-known, this latter type of cellular respiration is no less important, fuelling the production of most of the world's nitrous oxide (N2O), an ozone depleting and greenhouse gas 310 times more potent than carbon dioxide. As the enzyme responsible for catalyzing the reactions underlying anaerobic respiration, nitric oxide reductase (NOR) has attracted increasing attention in environmental circles. The mystery of NOR's catalyzing mechanism, however -- which accounts for a staggering 70% of the planet's N2O production -- remains largely unsolved.

With their latest research, the team sought an answer to this mystery in the origin of an evolutionary innovation known as the "proton pump." To accelerate ATP-synthesis, aerobic organisms harness the potential of an electrochemical concentration gradient across the cell, created by "pumping" protons out using energy from an oxygen reduction reaction. The enzyme powering this mechanism, cytochrome oxidase (COX), is genetically and structurally similar to NOR, suggesting a common ancestor. No evidence of any "pump," however, has been detected in anaerobic organisms.

That is, until now. Using radiation from the RIKEN SPring-8 facility in Harima, Japan, the world's largest synchrotron radiation facility, the researchers probed the 3D structure of qNOR and discovered a channel acting as a proton transfer pathway for a key catalytic reaction. While not itself a proton pump, the position and function of this pathway suggest it is an ancestor of the proton pump found in COX. The finding thus establishes first-ever evidence for a proton pump in anaerobic organisms, shedding light onto the mysterious mechanisms governing the production of nitrogen oxide and the evolutionary path that led to their emergence.


Story Source:

The above story is based on materials provided by RIKEN. Note: Materials may be edited for content and length.


Journal Reference:

  1. Yushi Matsumoto, Takehiko Tosha, Andrei V Pisliakov, Tomoya Hino, Hiroshi Sugimoto, Shingo Nagano, Yuji Sugita, Yoshitsugu Shiro. Crystal structure of quinol-dependent nitric oxide reductase from Geobacillus stearothermophilus. Nature Structural & Molecular Biology, 2012; DOI: 10.1038/nsmb.2213

Cite This Page:

RIKEN. "New study sheds light on evolutionary origin of oxygen-based cellular respiration." ScienceDaily. ScienceDaily, 24 January 2012. <www.sciencedaily.com/releases/2012/01/120122152445.htm>.
RIKEN. (2012, January 24). New study sheds light on evolutionary origin of oxygen-based cellular respiration. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2012/01/120122152445.htm
RIKEN. "New study sheds light on evolutionary origin of oxygen-based cellular respiration." ScienceDaily. www.sciencedaily.com/releases/2012/01/120122152445.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins