Featured Research

from universities, journals, and other organizations

New method for creating tissue engineering scaffolds

Date:
February 10, 2012
Source:
Northwestern University
Summary:
Researchers have developed a new method for creating scaffolds for tissue engineering applications, providing an alternative that is more flexible and less time-intensive than current technology.

Researchers at Northwestern University have developed a new method for creating scaffolds for tissue engineering applications, providing an alternative that is more flexible and less time-intensive than current technology.

A paper describing the results, "Low-Pressure Foaming: A Novel Method for the Fabrication of Porous Scaffolds for Tissue Engineering," was featured in the February issue of the journal Tissue Engineering.

Through tissue engineering, researchers seek to regenerate human tissue, such as bone and cartilage, that has been damaged by injury or disease. Scaffolds -- artificial, lattice-like structures capable of supporting tissue formation -- are necessary in this process to provide a template to support the growing cells. Over time, the scaffold resorbs into the body, leaving behind the natural tissue.

Scaffolds are typically engineered with pores that allow the cells to migrate throughout the material. The pores are often created with the use of salt, sugar, or carbon dioxide gas, but these additives have various drawbacks; They create an imperfect pore structures and, in the case of salt, require a lengthy process to remove the salt after the pores are created, said Guillermo Ameer, professor of biomedical engineering at the McCormick School of Engineering and professor of surgery at the Feinberg School of Medicine.

The new scaffolds, created from a combination of ceramic nanoparticles and elastic polymers, were formed in a vacuum through a process termed "low-pressure foaming" that requires high heat, Ameer said. The result was a series of pores that were highly interconnected and not dependent on the use of salt.

The new process creates scaffolds that are highly flexible and can be tailored to degrade at varying speeds depending on the recovery time expected for the patient. The scaffolds can also incorporate nano-sized fibers, providing a new range of mechanical and biological properties, Ameer said.

"The technology could prove very useful in repairing ACL (anterior cruciate ligament) tears and in bone void fillers," Ameer said.

Besides Ameer, other authors of the paper were E.J. Chung, M. Sugimoto, and J.L. Koh.


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Eun Ji Chung, Matthew Sugimoto, Jason L. Koh, Guillermo A. Ameer. Low-Pressure Foaming: A Novel Method for the Fabrication of Porous Scaffolds for Tissue Engineering. Tissue Engineering Part C: Methods, 2012; 18 (2): 113 DOI: 10.1089/ten.tec.2011.0289

Cite This Page:

Northwestern University. "New method for creating tissue engineering scaffolds." ScienceDaily. ScienceDaily, 10 February 2012. <www.sciencedaily.com/releases/2012/02/120210133356.htm>.
Northwestern University. (2012, February 10). New method for creating tissue engineering scaffolds. ScienceDaily. Retrieved April 25, 2014 from www.sciencedaily.com/releases/2012/02/120210133356.htm
Northwestern University. "New method for creating tissue engineering scaffolds." ScienceDaily. www.sciencedaily.com/releases/2012/02/120210133356.htm (accessed April 25, 2014).

Share This



More Plants & Animals News

Friday, April 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Fungus Killing Bats, Spreading in US

Deadly Fungus Killing Bats, Spreading in US

AP (Apr. 24, 2014) A disease that has killed more than six million cave-dwelling bats in the United States is on the move and wildlife biologists are worried. White Nose Syndrome, discovered in New York in 2006, has now spread to 25 states. (April 24) Video provided by AP
Powered by NewsLook.com
Blood From World's Oldest Woman Suggests Life Limit

Blood From World's Oldest Woman Suggests Life Limit

Newsy (Apr. 24, 2014) Scientists say for the extremely elderly, their stem cells might reach a state of exhaustion. This could limit one's life span. Video provided by Newsy
Powered by NewsLook.com
Raw: Kangaroo Rescued from Swimming Pool

Raw: Kangaroo Rescued from Swimming Pool

AP (Apr. 24, 2014) A kangaroo was saved from drowning in a backyard suburban swimming pool in Australia's Victoria state on Thursday. Australian broadcaster Channel 7 showed footage of the kangaroo struggling to get out of the pool. (April 24) Video provided by AP
Powered by NewsLook.com
Could Marijuana Use Lead To Serious Heart Problems?

Could Marijuana Use Lead To Serious Heart Problems?

Newsy (Apr. 24, 2014) A new study says marijuana use could lead to serious heart-related complications. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins