Featured Research

from universities, journals, and other organizations

DNA nanorobot triggers targeted therapeutic responses

Date:
February 16, 2012
Source:
Wyss Institute for Biologically Inspired Engineering at Harvard
Summary:
A new robotic device made from DNA could potentially seek out specific cell targets and deliver important molecular instructions, such as telling cancer cells to self-destruct. Inspired by the mechanics of the body's own immune system, the technology represents a major breakthrough in the field of nanobiotechnology and might one day be used to program immune responses to treat various diseases.

The programmable DNA nanorobot was modeled on the body's own immune system in which white blood cells patrol the bloodstream for any signs of trouble.
Credit: Image courtesy of Wyss Institute for Biologically Inspired Engineering at Harvard

Researchers at the Wyss Institute for Biologically Inspired Engineering at Harvard University have developed a robotic device made from DNA that could potentially seek out specific cell targets within a complex mixture of cell types and deliver important molecular instructions, such as telling cancer cells to self-destruct. Inspired by the mechanics of the body's own immune system, the technology might one day be used to program immune responses to treat various diseases.

Related Articles


The research findings recently appear in the journal Science.

Using the DNA origami method, in which complex three-dimensional shapes and objects are constructed by folding strands of DNA, Shawn Douglas, Ph.D., a Wyss Technology Development Fellow, and Ido Bachelet, Ph.D., a former Wyss Postdoctoral Fellow who is now an Assistant Professor in the Faculty of Life Sciences and the Nano-Center at Bar-Ilan University in Israel, created a nanosized robot in the form of an open barrel whose two halves are connected by a hinge. The DNA barrel, which acts as a container, is held shut by special DNA latches that can recognize and seek out combinations of cell-surface proteins, including disease markers. When the latches find their targets, they reconfigure, causing the two halves of the barrel to swing open and expose its contents, or payload. The container can hold various types of payloads, including specific molecules with encoded instructions that can interact with specific cell surface signaling receptors.

Douglas and Bachelet used this system to deliver instructions, which were encoded in antibody fragments, to two different types of cancer cells -- leukemia and lymphoma. In each case, the message to the cell was to activate its "suicide switch" -- a standard feature that allows aging or abnormal cells to be eliminated. And since leukemia and lymphoma cells speak different languages, the messages were written in different antibody combinations.

This programmable nanotherapeutic approach was modeled on the body's own immune system in which white blood cells patrol the bloodstream for any signs of trouble. These infection fighters are able to home in on specific cells in distress, bind to them, and transmit comprehensible signals to them to self-destruct. The DNA nanorobot emulates this level of specificity through the use of modular components in which different hinges and molecular messages can be switched in and out of the underlying delivery system, much as different engines and tires can be placed on the same chassis. The programmable power of this type of modularity means the system has the potential to one day be used to treat a variety of diseases.

"We can finally integrate sensing and logical computing functions via complex, yet predictable, nanostructures -- some of the first hybrids of structural DNA, antibodies, aptamers and metal atomic clusters -- aimed at useful, very specific targeting of human cancers and T-cells," said George Church, Ph.D., a Wyss core faculty member and Professor of Genetics at Harvard Medical School, who is Principal Investigator on the project. Because DNA is a natural biocompatible and biodegradable material, DNA nanotechnology is widely recognized for its potential as a delivery mechanism for drugs and molecular signals. But there have been significant challenges to its implementation, such as what type of structure to create; how to open, close, and reopen that structure to insert, transport, and deliver a payload; and how to program this type of nanoscale robot.

By combining several novel elements for the first time, the new system represents a significant advance in overcoming these implementation obstacles. For instance, because the barrel-shaped structure has no top or bottom lids, the payloads can be loaded from the side in a single step--without having to open the structure first and then reclose it. Also, while other systems use release mechanisms that respond to DNA or RNA, the novel mechanism used here responds to proteins, which are more commonly found on cell surfaces and are largely responsible for transmembrane signaling in cells. Finally, this is the first DNA-origami-based system that uses antibody fragments to convey molecular messages -- a feature that offers a controlled and programmable way to replicate an immune response or develop new types of targeted therapies.

"This work represents a major breakthrough in the field of nanobiotechnology as it demonstrates the ability to leverage recent advances in the field of DNA origami pioneered by researchers around the world, including the Wyss Institute's own William Shih, to meet a real-world challenge, namely killing cancer cells with high specificity," said Wyss Institute Founding Director, Donald Ingber, M.D., Ph.D. Ingber is also the Judah Folkman Professor of Vascular Biology at Harvard Medical School and the Vascular Biology Program at Children's Hospital Boston, and Professor of Bioengineering at Harvard's School of Engineering and Applied Sciences. "This focus on translating technologies from the laboratory into transformative products and therapies is what the Wyss Institute is all about."


Story Source:

The above story is based on materials provided by Wyss Institute for Biologically Inspired Engineering at Harvard. Note: Materials may be edited for content and length.


Journal Reference:

  1. S. M. Douglas, I. Bachelet, G. M. Church. A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads. Science, 2012; 335 (6070): 831 DOI: 10.1126/science.1214081

Cite This Page:

Wyss Institute for Biologically Inspired Engineering at Harvard. "DNA nanorobot triggers targeted therapeutic responses." ScienceDaily. ScienceDaily, 16 February 2012. <www.sciencedaily.com/releases/2012/02/120216144238.htm>.
Wyss Institute for Biologically Inspired Engineering at Harvard. (2012, February 16). DNA nanorobot triggers targeted therapeutic responses. ScienceDaily. Retrieved January 29, 2015 from www.sciencedaily.com/releases/2012/02/120216144238.htm
Wyss Institute for Biologically Inspired Engineering at Harvard. "DNA nanorobot triggers targeted therapeutic responses." ScienceDaily. www.sciencedaily.com/releases/2012/02/120216144238.htm (accessed January 29, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, January 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Malnutrition on the Rise as Violence Flares in C. Africa

Malnutrition on the Rise as Violence Flares in C. Africa

AFP (Jan. 28, 2015) Violence can flare up at any moment in Bambari with only a bridge separating Muslims and Christians. Malnutrition is on the rise and lack of water means simple cooking fires threaten to destroy makeshift camps where people are living. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Poultry Culled in Taiwan to Thwart Bird Flu

Poultry Culled in Taiwan to Thwart Bird Flu

Reuters - News Video Online (Jan. 28, 2015) Taiwan culls over a million poultry in efforts to halt various strains of avian flu. Julie Noce reports. Video provided by Reuters
Powered by NewsLook.com
Media Criticizing Parents For Not Vaccinating Children

Media Criticizing Parents For Not Vaccinating Children

Newsy (Jan. 28, 2015) As the Disneyland measles outbreak continues to spread, the media says parents who choose not to vaccinate their children are part of the cause. Video provided by Newsy
Powered by NewsLook.com
Shark Bite Victim Making Amazing Recovery

Shark Bite Victim Making Amazing Recovery

AP (Jan. 27, 2015) A Texas woman who lost more than five pounds of flesh to a shark in the Bahamas earlier this month could be released from a Florida hospital soon. Experts believe she was bitten by a bull shark while snorkeling. (Jan. 27) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins