Featured Research

from universities, journals, and other organizations

Molecular Braille created to identify DNA molecules

Date:
March 27, 2012
Source:
New York University
Summary:
Researchers have developed a method to detect sequence differences in individual DNA molecules by taking nanoscopic pictures of the molecules themselves.

Researchers at UCLA and New York University have developed a method to detect sequence differences in individual DNA molecules by taking nanoscopic pictures of the molecules themselves.

Related Articles


The work is reported in the Journal of the Royal Society Interface.

Using the approach they call "Direct Molecular Recognition," the UCLA and NYU researchers used nanoparticles to turn the DNA molecules into a form of molecular braille that can be read in the scale of nanometers, or one billionth of a meter, using high-speed Atomic Force Microscopy (AFM).

The leaders of the study are: Jason Reed, a research professor, and Professor Jim Gimzewski, nanotechnology pioneer, both at UCLA's California Nanosystems Institute, and Professor Bud Mishra, genomics expert, at NYU's Courant Institute of Mathematical Sciences. This group believes the method will have many practical uses, such as super-sensitive detection of DNA molecules in genomic research and medical diagnostics as well as in identifying pathogens.

While there are a variety of techniques currently used for this purpose, they are time consuming, technically difficult, and expensive. They also require a significant amount of genetic material in order to make accurate readings and often require prior knowledge of the sample composition.

According to Mishra, to overcome these shortcomings, the team devised a "single-cell, single-molecule" method that would dispense with the complex chemical manipulations on which existing methods are based, and, instead, utilize the unique shapes of the molecules themselves as the method of identification. This approach has the benefits of being rapid and sensitive to the level of a single molecule.

Reed says that "the long term goal of our team's research is to dissect, understand, and control the biology of single cells in complex tissues, such as brain, or in malignant tumors. Furthering this body of work requires that we address an unsolved problem in single-cell molecular analysis: the lack of a method to routinely, reliably, and inexpensively determine global gene transcriptional activity."

In their paper, the team closely examined the potential use of this technique to quantify the activity of genes in living tissue, a method known as transcriptional profiling. They were able to show that their Direct Molecular Recognition technique could accurately quantitate the relative abundance of multiple DNA species in a mixture using only a handful of molecules -- a result not achievable using other methods.

Their study was supported by a grant to from the National Institute of General Medical Sciences, part of the National Institutes of Health.


Story Source:

The above story is based on materials provided by New York University. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. Reed, C. Hsueh, M.-L. Lam, R. Kjolby, A. Sundstrom, B. Mishra, J. K. Gimzewski. Identifying individual DNA species in a complex mixture by precisely measuring the spacing between nicking restriction enzymes with atomic force microscope. Journal of The Royal Society Interface, 2012; DOI: 10.1098/rsif.2012.0024

Cite This Page:

New York University. "Molecular Braille created to identify DNA molecules." ScienceDaily. ScienceDaily, 27 March 2012. <www.sciencedaily.com/releases/2012/03/120327215548.htm>.
New York University. (2012, March 27). Molecular Braille created to identify DNA molecules. ScienceDaily. Retrieved January 28, 2015 from www.sciencedaily.com/releases/2012/03/120327215548.htm
New York University. "Molecular Braille created to identify DNA molecules." ScienceDaily. www.sciencedaily.com/releases/2012/03/120327215548.htm (accessed January 28, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Wednesday, January 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Amplifying Tiny Movements to Visualize the Invisible

Amplifying Tiny Movements to Visualize the Invisible

Reuters - Innovations Video Online (Jan. 28, 2015) A new video recording method that amplifies seemingly invisible motion could lead to a touch-free vital signs monitor, and offer a new tool for engineers to gauge stresses on bridges and tunnels in real time. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Boeing's Profit Soars

Boeing's Profit Soars

Reuters - Business Video Online (Jan. 28, 2015) Boeing delivered more commercial planes, especially 737s and 787s, fueling profit. But it issued a mixed outlook. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Robot Replacements for Foxconn's Workers

Robot Replacements for Foxconn's Workers

Reuters - Business Video Online (Jan. 28, 2015) Foxconn parent Hon Hai Precision Industry is looking to automation to keep productivity up without the rising costs of human labor. Meg Teckman reports. Video provided by Reuters
Powered by NewsLook.com
More Guns Found in Carry-on Bags at US Airports

More Guns Found in Carry-on Bags at US Airports

AP (Jan. 27, 2015) The Transportation Security Administration says officers discovered 2,212 firearms during safety screenings last year, a 22 percent jump over 2013. (Jan. 27) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins