Featured Research

from universities, journals, and other organizations

Nanotechnology used to harness power of fireflies

Date:
June 15, 2012
Source:
Syracuse University
Summary:
Scientists have found a new way to harness the natural light produced by fireflies using nanoscience. Their breakthrough produces a system that is 20 to 30 times more efficient than those produced during previous experiments.

Nanorods created with firefly enzymes glow orange. The custom, quantum nanorods are created in the laboratory of Mathew Maye, assistant professor of chemistry.
Credit: Image courtesy of Syracuse University

What do fireflies, nanorods, and Christmas lights have in common? Someday, consumers may be able to purchase multicolor strings of light that don't need electricity or batteries to glow. Scientists at Syracuse University found a new way to harness the natural light produced by fireflies (called bioluminescence) using nanoscience. Their breakthrough produces a system that is 20 to 30 times more efficient than those produced during previous experiments.

It's all about the size and structure of the custom, quantum nanorods, which are produced in the laboratory by Mathew Maye, assistant professor of chemistry in SU's College of Arts and Sciences; and Rebeka Alam, a chemistry Ph.D. candidate. Maye is also a member of the Syracuse Biomaterials Institute. "Firefly light is one of nature's best examples of bioluminescence," Maye says. "The light is extremely bright and efficient. We've found a new way to harness biology for non-biological applications by manipulating the interface between the biological and non-biological components."

Their work, "Designing Quantum Rods for Optimized Energy Transfer with Firefly Luciferase Enzymes," was published online May 23 in Nano Letters and is forthcoming in print. Collaborating on the research were Professor Bruce Branchini and Danielle Fontaine, both from Connecticut College.

Fireflies produce light through a chemical reaction between luciferin and it's counterpart, the enzyme luciferase. In Maye's laboratory, the enzyme is attached to the nanorod's surface; luciferin, which is added later, serves as the fuel. The energy that is released when the fuel and the enzyme interact is transferred to the nanorods, causing them to glow. The process is called Bioluminescence Resonance Energy Transfer (BRET).

"The trick to increasing the efficiency of the system is to decrease the distance between the enzyme and the surface of the rod and to optimize the rod's architecture," Maye says. "We designed a way to chemically attach, genetically manipulated luciferase enzymes directly to the surface of the nanorod." Maye's collaborators at Connecticut College provided the genetically manipulated luciferase enzyme.

The nanorods are composed of an outer shell of cadmium sulfide and an inner core of cadmium seleneide. Both are semiconductor metals. Manipulating the size of the core, and the length of the rod, alters the color of the light that is produced. The colors produced in the laboratory are not possible for fireflies. Maye's nanorods glow green, orange, and red. Fireflies naturally emit a yellowish glow. The efficiency of the system is measured on a BRET scale. The researchers found their most efficient rods (BRET scale of 44) occurred for a special rod architecture (called rod-in-rod) that emitted light in the near-infrared light range. Infrared light has longer wavelengths than visible light and is invisible to the eye. Infrared illumination is important for such things as night vision goggles, telescopes, cameras, and medical imaging.

Maye's and Alam's firefly-conjugated nanorods currently exist only in their chemistry laboratory. Additional research is ongoing to develop methods of sustaining the chemical reaction -- and energy transfer -- for longer periods of time and to "scale-up" the system. Maye believes the system holds the most promise for future technologies that that will convert chemical energy directly to light; however, the idea of glowing nanorods substituting for LED lights is not the stuff of science fiction.


Story Source:

The above story is based on materials provided by Syracuse University. The original article was written by Judy Holmes. Note: Materials may be edited for content and length.


Journal Reference:

  1. Rabeka Alam, Danielle M. Fontaine, Bruce R. Branchini, Mathew M. Maye. Designing Quantum Rods for Optimized Energy Transfer with Firefly Luciferase Enzymes. Nano Letters, 2012; 120523130524006 DOI: 10.1021/nl301291g

Cite This Page:

Syracuse University. "Nanotechnology used to harness power of fireflies." ScienceDaily. ScienceDaily, 15 June 2012. <www.sciencedaily.com/releases/2012/06/120615114104.htm>.
Syracuse University. (2012, June 15). Nanotechnology used to harness power of fireflies. ScienceDaily. Retrieved April 19, 2014 from www.sciencedaily.com/releases/2012/06/120615114104.htm
Syracuse University. "Nanotechnology used to harness power of fireflies." ScienceDaily. www.sciencedaily.com/releases/2012/06/120615114104.htm (accessed April 19, 2014).

Share This



More Earth & Climate News

Saturday, April 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drought Concerns May Hurt Lake Tourism

Drought Concerns May Hurt Lake Tourism

AP (Apr. 18, 2014) Operators of recreational businesses on western reservoirs worry that ongoing drought concerns will keep boaters and other visitors from flocking to the popular summer attractions. (April 18) Video provided by AP
Powered by NewsLook.com
First Ever 'Female Penis' Discovered In Animal Kingdom

First Ever 'Female Penis' Discovered In Animal Kingdom

Newsy (Apr. 18, 2014) Not only are these newly discovered bugs' sex organs reversed, but they also mate for up to 70 hours. Video provided by Newsy
Powered by NewsLook.com
Ark. Man Finds 6-Carat Diamond At State Park

Ark. Man Finds 6-Carat Diamond At State Park

Newsy (Apr. 18, 2014) An Arkansas man has found a nearly 6.2-carat diamond, which he dubbed "The Limitless Diamond," at the Crater of Diamonds State Park. Video provided by Newsy
Powered by NewsLook.com
Deadly Avalanche Sweeps Slopes of Mount Everest

Deadly Avalanche Sweeps Slopes of Mount Everest

AP (Apr. 18, 2014) At least six Nepalese guides are dead after an avalanche swept the slopes of Mount Everest along a route used to climb the world's highest peak. (April 18) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins