Featured Research

from universities, journals, and other organizations

The magnetic sense: Why powerlines confuse the internal compass of migrating birds

Date:
July 10, 2012
Source:
Ludwig-Maximilians-Universität München
Summary:
Migratory birds and fish use the Earth's magnetic field to find their way. Researchers have now identified cells with internal compass needles for the perception of the field – and can explain why high-tension cables perturb the magnetic orientation.

Migratory birds and fish use Earth's magnetic field to find their way. LMU researchers have now identified cells with internal compass needles for the perception of the field -- and can explain why high-tension cables perturb the magnetic orientation.

Related Articles


Although many animal species can sense the geomagnetic field and exploit it for spatial orientation, efforts to pinpoint the cells that detect the field and convert the information into nerve impulses have so far failed. "The field penetrates the whole organism, so such cells could be located almost anywhere, making them hard to identify," says LMU geophysicist Michael Winklhofer. Together with an international team, he has located magnetosensory cells in the olfactory epithelium of the trout.

The researchers first used enzymes to dissociate the sensory epithelium into single cells. The cell suspension was then stimulated with an artificial, rotating magnetic field. This approach enabled the team to identify and collect single magnetoresponsive cells, and characterize their properties in detail. Much to Winklhofer's surprise, the cells turned out to be more strongly magnetic than previously postulated -- a finding that explains the high sensitivity of the magnetic sense.

Magnetite crystals show the way

The cells sense the field by means of micrometer-sized inclusions composed of magnetic crystals, probably made of magnetite. The inclusions are coupled to the cell membrane, which is necessary to change the electrical potential across the membrane when the crystals realign in response to a change in the ambient magnetic field. "This explains why low-frequency magnetic fields generated by powerlines disrupt navigation relative to the geomagnetic field and may induce other physiological effects," says Winklhofer.

The new findings could lead to advances in the sphere of applied sciences, for example in the development of highly sensitive magnetometers. In addition, they raise the question of whether human cells are capable of forming magnetite and if so, how much. "If the answer to the question is yes," Winklhofer speculates, "intracellular magnetite would provide a concrete physiological substrate that could couple to so-called electrosmog."


Story Source:

The above story is based on materials provided by Ludwig-Maximilians-Universität München. Note: Materials may be edited for content and length.


Journal Reference:

  1. S. H. K. Eder, H. Cadiou, A. Muhamad, P. A. McNaughton, J. L. Kirschvink, M. Winklhofer. Magnetic characterization of isolated candidate vertebrate magnetoreceptor cells. Proceedings of the National Academy of Sciences, 2012; DOI: 10.1073/pnas.1205653109

Cite This Page:

Ludwig-Maximilians-Universität München. "The magnetic sense: Why powerlines confuse the internal compass of migrating birds." ScienceDaily. ScienceDaily, 10 July 2012. <www.sciencedaily.com/releases/2012/07/120710120229.htm>.
Ludwig-Maximilians-Universität München. (2012, July 10). The magnetic sense: Why powerlines confuse the internal compass of migrating birds. ScienceDaily. Retrieved January 24, 2015 from www.sciencedaily.com/releases/2012/07/120710120229.htm
Ludwig-Maximilians-Universität München. "The magnetic sense: Why powerlines confuse the internal compass of migrating birds." ScienceDaily. www.sciencedaily.com/releases/2012/07/120710120229.htm (accessed January 24, 2015).

Share This


More From ScienceDaily



More Earth & Climate News

Saturday, January 24, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Dramatic Footage Shows Coast Guard Rescue Off Scottish Coast

Dramatic Footage Shows Coast Guard Rescue Off Scottish Coast

Reuters - News Video Online (Jan. 23, 2015) — Footage just released by the UK Coast Guard shows a dramatic helicopter rescue off the Scottish coast, where five men were plucked to safety after their fishing boat sank on Saturday. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Stunning Wingsuit Proximity Flying in Norway

Stunning Wingsuit Proximity Flying in Norway

Rumble (Jan. 23, 2015) — A collection of amazing shots from flights made in the Aurland Valley in Norway. How incredible is that? Credit to &apos;BASEjumper&apos;. Video provided by Rumble
Powered by NewsLook.com
Senate Agrees Climate Change Is Happening, Just Not On Why

Senate Agrees Climate Change Is Happening, Just Not On Why

Newsy (Jan. 22, 2015) — The Senate voted to confirm climate change is real, but some still weren&apos;t on board with the idea that humans are causing it. Video provided by Newsy
Powered by NewsLook.com
Raw: Big Waves Hit Hawaii

Raw: Big Waves Hit Hawaii

AP (Jan. 22, 2015) — Hawaii officials are warning the public of high surf along north and west-facing shores. Waimea Bay Beach Park near Honolulu was closed on Wednesay due to hazardous high surf. (Jan. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins