Featured Research

from universities, journals, and other organizations

New biofuel process dramatically improves energy recovery, and uses agricultural waste

Date:
July 10, 2012
Source:
Michigan State University
Summary:
A new biofuel production process produces energy more than 20 times higher than existing methods. The results showcase a novel way to use microbes to produce biofuel and hydrogen, all while consuming agricultural wastes.

A new biofuel production process created by Michigan State University researchers produces energy more than 20 times higher than existing methods.
Credit: Image courtesy of Michigan State University

A new biofuel production process created by Michigan State University researchers produces energy more than 20 times higher than existing methods.

Related Articles


The results, published in the current issue of Environmental Science and Technology, showcase a novel way to use microbes to produce biofuel and hydrogen, all while consuming agricultural wastes.

Gemma Reguera, MSU microbiologist, has developed bioelectrochemical systems known as microbial electrolysis cells, or MECs, using bacteria to breakdown and ferment agricultural waste into ethanol. Reguera's platform is unique because it employs a second bacterium, which, when added to the mix, removes all the waste fermentation byproducts or nonethanol materials while generating electricity.

Similar microbial fuel cells have been investigated before. However, maximum energy recoveries from corn stover, a common feedstock for biofuels, hover around 3.5 percent. Reguera's platform, despite the energy invested in chemical pretreatment of the corn stover, averaged 35 to 40 percent energy recovery just from the fermentation process, said Reguera, an AgBioResearch scientist who co-authored the paper with Allison Spears, MSU graduate student.

"This is because the fermentative bacterium was carefully selected to degrade and ferment agricultural wastes into ethanol efficiently and to produce byproducts that could be metabolized by the electricity-producing bacterium," Reguera said. "By removing the waste products of fermentation, the growth and metabolism of the fermentative bacterium also was stimulated. Basically, each step we take is custom-designed to be optimal."

The second bacterium, Geobacter sulfurreducens, generates electricity. The electricity, however, isn't harvested as an output. It is used to generate hydrogen in the MEC to increase the energy recovery process even more, Reguera said.

"When the MEC generates hydrogen, it actually doubles the energy recoveries," she said. "We increased energy recovery to 73 percent. So the potential is definitely there to make this platform attractive for processing agricultural wastes."

Reguera's fuel cells use corn stover treated by the ammonia fiber expansion process, an advanced pretreatment technology pioneered at MSU. AFEX is an already proven method that was developed by Bruce Dale, MSU professor of chemical engineering and materials science.

Dale is currently working to make AFEX viable on a commercial scale.

In a similar vein, Reguera is continuing to optimize her MECs so they, too, can be scaled up on a commercial basis. Her goal is to develop decentralized systems that can help process agricultural wastes. Decentralized systems could be customized at small to medium scales (scales such as compost bins and small silages, for example) to provide an attractive method to recycle the wastes while generating fuel for farms.


Story Source:

The above story is based on materials provided by Michigan State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Allison M. Speers, Gemma Reguera. Consolidated Bioprocessing of AFEX-Pretreated Corn Stover to Ethanol and Hydrogen in a Microbial Electrolysis Cell. Environmental Science & Technology, 2012; 120628130731000 DOI: 10.1021/es3008497

Cite This Page:

Michigan State University. "New biofuel process dramatically improves energy recovery, and uses agricultural waste." ScienceDaily. ScienceDaily, 10 July 2012. <www.sciencedaily.com/releases/2012/07/120710133054.htm>.
Michigan State University. (2012, July 10). New biofuel process dramatically improves energy recovery, and uses agricultural waste. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2012/07/120710133054.htm
Michigan State University. "New biofuel process dramatically improves energy recovery, and uses agricultural waste." ScienceDaily. www.sciencedaily.com/releases/2012/07/120710133054.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) — Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) — Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Antarctic Sea Ice Mystery Thickens... Literally

Antarctic Sea Ice Mystery Thickens... Literally

Newsy (Nov. 25, 2014) — Antarctic sea ice isn't only expanding, it's thicker than previously thought, and scientists aren't sure exactly why. Video provided by Newsy
Powered by NewsLook.com
3D Map of Antarctic Sea Ice to Shed Light on Climate Change

3D Map of Antarctic Sea Ice to Shed Light on Climate Change

Reuters - Innovations Video Online (Nov. 24, 2014) — A multinational group of scientists have released the first ever detailed, high-resolution 3-D maps of Antarctic sea ice. Using an underwater robot equipped with sonar, the researchers mapped the underside of a massive area of sea ice to gauge the impact of climate change. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins