Featured Research

from universities, journals, and other organizations

New biofuel process dramatically improves energy recovery, and uses agricultural waste

Date:
July 10, 2012
Source:
Michigan State University
Summary:
A new biofuel production process produces energy more than 20 times higher than existing methods. The results showcase a novel way to use microbes to produce biofuel and hydrogen, all while consuming agricultural wastes.

A new biofuel production process created by Michigan State University researchers produces energy more than 20 times higher than existing methods.
Credit: Image courtesy of Michigan State University

A new biofuel production process created by Michigan State University researchers produces energy more than 20 times higher than existing methods.

Related Articles


The results, published in the current issue of Environmental Science and Technology, showcase a novel way to use microbes to produce biofuel and hydrogen, all while consuming agricultural wastes.

Gemma Reguera, MSU microbiologist, has developed bioelectrochemical systems known as microbial electrolysis cells, or MECs, using bacteria to breakdown and ferment agricultural waste into ethanol. Reguera's platform is unique because it employs a second bacterium, which, when added to the mix, removes all the waste fermentation byproducts or nonethanol materials while generating electricity.

Similar microbial fuel cells have been investigated before. However, maximum energy recoveries from corn stover, a common feedstock for biofuels, hover around 3.5 percent. Reguera's platform, despite the energy invested in chemical pretreatment of the corn stover, averaged 35 to 40 percent energy recovery just from the fermentation process, said Reguera, an AgBioResearch scientist who co-authored the paper with Allison Spears, MSU graduate student.

"This is because the fermentative bacterium was carefully selected to degrade and ferment agricultural wastes into ethanol efficiently and to produce byproducts that could be metabolized by the electricity-producing bacterium," Reguera said. "By removing the waste products of fermentation, the growth and metabolism of the fermentative bacterium also was stimulated. Basically, each step we take is custom-designed to be optimal."

The second bacterium, Geobacter sulfurreducens, generates electricity. The electricity, however, isn't harvested as an output. It is used to generate hydrogen in the MEC to increase the energy recovery process even more, Reguera said.

"When the MEC generates hydrogen, it actually doubles the energy recoveries," she said. "We increased energy recovery to 73 percent. So the potential is definitely there to make this platform attractive for processing agricultural wastes."

Reguera's fuel cells use corn stover treated by the ammonia fiber expansion process, an advanced pretreatment technology pioneered at MSU. AFEX is an already proven method that was developed by Bruce Dale, MSU professor of chemical engineering and materials science.

Dale is currently working to make AFEX viable on a commercial scale.

In a similar vein, Reguera is continuing to optimize her MECs so they, too, can be scaled up on a commercial basis. Her goal is to develop decentralized systems that can help process agricultural wastes. Decentralized systems could be customized at small to medium scales (scales such as compost bins and small silages, for example) to provide an attractive method to recycle the wastes while generating fuel for farms.


Story Source:

The above story is based on materials provided by Michigan State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Allison M. Speers, Gemma Reguera. Consolidated Bioprocessing of AFEX-Pretreated Corn Stover to Ethanol and Hydrogen in a Microbial Electrolysis Cell. Environmental Science & Technology, 2012; 120628130731000 DOI: 10.1021/es3008497

Cite This Page:

Michigan State University. "New biofuel process dramatically improves energy recovery, and uses agricultural waste." ScienceDaily. ScienceDaily, 10 July 2012. <www.sciencedaily.com/releases/2012/07/120710133054.htm>.
Michigan State University. (2012, July 10). New biofuel process dramatically improves energy recovery, and uses agricultural waste. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2012/07/120710133054.htm
Michigan State University. "New biofuel process dramatically improves energy recovery, and uses agricultural waste." ScienceDaily. www.sciencedaily.com/releases/2012/07/120710133054.htm (accessed October 30, 2014).

Share This



More Earth & Climate News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Mudslide in Sri Lanka Buries Houses

Deadly Mudslide in Sri Lanka Buries Houses

AP (Oct. 29, 2014) A mudslide triggered by monsoon rains buried scores of workers' houses at a tea plantation in central Sri Lanka on Wednesday, killing at least 10 people and leaving more than 250 missing, an official said. (Oct. 29) Video provided by AP
Powered by NewsLook.com
Galapagos Tortoises Bounce Back, But Ecosystem Lags

Galapagos Tortoises Bounce Back, But Ecosystem Lags

Newsy (Oct. 29, 2014) The Galapagos tortoise has made a stupendous recovery from the brink of extinction to a population of more than 1,000. But it still faces threats. Video provided by Newsy
Powered by NewsLook.com
Saharan Solar Project to Power Europe

Saharan Solar Project to Power Europe

Reuters - Business Video Online (Oct. 29, 2014) A solar energy project in the Tunisian Sahara aims to generate enough clean energy by 2018 to power two million European homes. Matt Stock reports. Video provided by Reuters
Powered by NewsLook.com
Obama: The US Will Not 'run and Hide' From Ebola

Obama: The US Will Not 'run and Hide' From Ebola

AP (Oct. 29, 2014) Surrounded by health care workers in the White House East Room, President Barack Obama said the U.S. will likely see additional Ebola cases in the weeks ahead. But he said the nation can't seal itself off in the fight against the disease. (Oct. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins