Featured Research

from universities, journals, and other organizations

How cells degrade aberrant membrane proteins

Date:
July 13, 2012
Source:
Heidelberg, Universität
Summary:
Researchers have achieved unexpected insights into the process of how damaged proteins are degraded within cells. Their work focused on the function of a special protease. This enzyme can hydrolyze peptide bonds in the plane of cellular membranes, a site where such water-requiring reactions commonly do not occur. The scientists can now show that this unusual protease recognizes and degrades aberrant proteins directly in the membrane.

Researchers from Heidelberg University's Center for Molecular Biology (ZMBH) have achieved unexpected insights into the process of how damaged proteins are degraded within cells. Their work focused on the function of a special protease. This enzyme can hydrolyse peptide bonds in the plane of cellular membranes, a site where such water-requiring reactions commonly do not occur. The scientists working with Dr. Marius Lemberg could now show that this unusual protease recognises and degrades aberrant proteins directly in the membrane.

The findings were published online in Molecular Cell.

When the research team around Dr. Lemberg started its work on a member of these special proteases they predicted by computational approaches that this enzyme would be active. However, they still faced the challenge to experimentally determine the physiological substrates. "The existing knowledge about relatives from the so-called rhomboid protease family did not help us in our quest for the molecules processed by the enzyme we discovered," says Dr. Lemberg. Unlike all rhomboid proteases that had been studied so far, the new rhomboid localises to the Endoplasmic Reticulum (ER), the site in the cell where new membrane proteins are produced.

The breakthrough came after the researchers observed that the ER rhomboid protease is increasingly needed during protein folding stress. Proteins are produced as long chains of amino acids that have to correctly fold into a three-dimensional structure to fulfil their function. Especially when accumulating, misfolded proteins can severely damage cells and are known to cause impairments such as Alzheimer's and Parkinson's disease.

"We now have revealed that the ER rhomboid protease cleaves aberrant membrane proteins within their membrane anchor," says Dr. Lemberg. Furthermore, the scientists demonstrated that this protease cooperates directly with components of the so-called ER-associated degradation (ERAD) pathway to dispose of the faulty protein. According to Dr. Lemberg, these new insights now provide the basis for a molecular understanding of how membrane proteins that make up a large fraction of cellular proteins are extracted from these membranes for degradation without getting into each other's way.

The junior research group of Dr. Lemberg is part of the DKFZ-ZMBH Alliance -- the strategic cooperation between the German Cancer Research Center (DKFZ) and the Heidelberg University's Center for Molecular Biology (ZMBH) -- as well as of the interdisciplinary Network Aging Research (NAR) at Ruperto Carola. The group receives funding from the Baden-Württemberg Foundation.


Story Source:

The above story is based on materials provided by Heidelberg, Universität. Note: Materials may be edited for content and length.


Journal Reference:

  1. Lina Fleig, Nina Bergbold, Priyanka Sahasrabudhe, Beate Geiger, Lejla Kaltak, Marius K. Lemberg. Ubiquitin-Dependent Intramembrane Rhomboid Protease Promotes ERAD of Membrane Proteins. Mol. Cell, July 12, 2012 DOI: 10.1016/j.molcel.2012.06.008

Cite This Page:

Heidelberg, Universität. "How cells degrade aberrant membrane proteins." ScienceDaily. ScienceDaily, 13 July 2012. <www.sciencedaily.com/releases/2012/07/120713095250.htm>.
Heidelberg, Universität. (2012, July 13). How cells degrade aberrant membrane proteins. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2012/07/120713095250.htm
Heidelberg, Universität. "How cells degrade aberrant membrane proteins." ScienceDaily. www.sciencedaily.com/releases/2012/07/120713095250.htm (accessed July 29, 2014).

Share This




More Plants & Animals News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Rodents Rampant in Gardens Around Louvre

Rodents Rampant in Gardens Around Louvre

AP (July 29, 2014) — Food scraps and other items left on the grounds by picnickers brings unwelcome visitors to the grounds of the world famous and popular Louvre Museum in Paris. (July 29) Video provided by AP
Powered by NewsLook.com
Jane Goodall Warns Great Apes Face Extinction

Jane Goodall Warns Great Apes Face Extinction

AFP (July 29, 2014) — The world's great apes face extinction within decades, renowned chimpanzee expert Jane Goodall warned Tuesday in a call to arms to ensure man's closest relatives are not wiped out. Duration: 00:58 Video provided by AFP
Powered by NewsLook.com
How Your Face Can Leave A Good Or Bad First Impression

How Your Face Can Leave A Good Or Bad First Impression

Newsy (July 29, 2014) — Researchers have found certain facial features can make us seem more attractive or trustworthy. Video provided by Newsy
Powered by NewsLook.com
Rat Infestation at Paris' Tuileries Garden

Rat Infestation at Paris' Tuileries Garden

AFP (July 29, 2014) — An infestation of rats is causing concern among tourists at Paris' most famous park -- the Tuileries garden next to the Louvre Museum. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins