Featured Research

from universities, journals, and other organizations

Ion selectivity in neuronal signaling channels evolved twice in animals

Date:
July 26, 2012
Source:
University of Vienna
Summary:
Excitation of neurons depends on the selected influx of certain ions through specific channels. Obviously, these channels were crucial for the evolution of nervous systems in animals. Scientists have revealed that voltage-gated sodium channels, which are responsible for neuronal signaling in the nerves of animals, evolved twice in higher and lower animals.

Close-up of nervous system of a transgenic polyp of the sea anemone Nematostella vectensis, in which a red fluorescent reporter gene (mCherry) is driven by the regulatory sequence of the neuronal ELAV gene. The picture shows the diffuse structure of the nervous system, but also reveals the accumulation of longitudinal axonal tracts along the eight gastric tissue folds (mesenteries).
Credit: Copyright: U. Technau

Excitation of neurons depends on the selected influx of certain ions, namely sodium, calcium and potassium through specific channels. Obviously, these channels were crucial for the evolution of nervous systems in animals. How such channels could have evolved their selectivity has been a puzzle until now.

Related Articles


Yehu Moran and Ulrich Technau from the University of Vienna together with Scientists from Tel Aviv University and the Woods Hole Oceanographic Institution (USA) have now revealed that voltage-gated sodium channels, which are responsible for neuronal signaling in the nerves of animals, evolved twice in higher and lower animals.

These results were published in Cell Reports.

The opening and closing of ion channels enable flow of ions that constitute the electrical signaling in all nervous systems. Every thought we have or every move we make is the result of the highly accurate opening and closing of numerous ion channels. Whereas the channels of most lower animals and their unicellular relatives cannot discern between sodium and calcium ions, those of higher animals are highly specific for sodium, a characteristic that is important for fast and accurate signaling in complex nervous system.

Surprising results in sea anemones and jellyfish

However, the researchers found that a group of basal animals with simple nerve nets including sea anemones and jellyfish also possess voltage-gated sodium channels, which differ from those found in higher animals, yet show the same selectivity for sodium. Since cnidarians separated from the rest of the animals more than 600 million years ago, these findings suggest that the channels of both cnidarians and higher animals originated independently twice, from ancient non-selective channels which also transmit calcium.

Since many other processes of internal cell signaling are highly dependent on calcium ions, the use of non-selective ion channels in neurons would accidently trigger various signaling systems inside the cells and will cause damage. The evolution of selectivity for sodium ions is therefore considered as an important step in the evolution of nervous systems with fast transmission. This study shows that different parts of the channel changed in a convergent manner during the evolution of cnidarians and higher animals in order to perform the same task, namely to select for sodium ions.

This demonstrates that important components for the functional nervous systems evolved twice in basal and higher animals, which suggests that more complex nervous systems that rely on such ion-selective channels could have also evolved twice independently.


Story Source:

The above story is based on materials provided by University of Vienna. Note: Materials may be edited for content and length.


Cite This Page:

University of Vienna. "Ion selectivity in neuronal signaling channels evolved twice in animals." ScienceDaily. ScienceDaily, 26 July 2012. <www.sciencedaily.com/releases/2012/07/120726135228.htm>.
University of Vienna. (2012, July 26). Ion selectivity in neuronal signaling channels evolved twice in animals. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2012/07/120726135228.htm
University of Vienna. "Ion selectivity in neuronal signaling channels evolved twice in animals." ScienceDaily. www.sciencedaily.com/releases/2012/07/120726135228.htm (accessed October 30, 2014).

Share This



More Plants & Animals News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Galapagos Tortoises Bounce Back, But Ecosystem Lags

Galapagos Tortoises Bounce Back, But Ecosystem Lags

Newsy (Oct. 29, 2014) The Galapagos tortoise has made a stupendous recovery from the brink of extinction to a population of more than 1,000. But it still faces threats. Video provided by Newsy
Powered by NewsLook.com
Can Drinking Milk Lead To Early Death?

Can Drinking Milk Lead To Early Death?

Newsy (Oct. 29, 2014) Researchers in Sweden released a study showing heavy milk drinkers face an increased mortality risk from a variety of causes. Video provided by Newsy
Powered by NewsLook.com
Obama: The US Will Not 'run and Hide' From Ebola

Obama: The US Will Not 'run and Hide' From Ebola

AP (Oct. 29, 2014) Surrounded by health care workers in the White House East Room, President Barack Obama said the U.S. will likely see additional Ebola cases in the weeks ahead. But he said the nation can't seal itself off in the fight against the disease. (Oct. 29) Video provided by AP
Powered by NewsLook.com
Oatmeal Healthy Recipes and Benefits

Oatmeal Healthy Recipes and Benefits

Buzz60 (Oct. 29, 2014) Oatmeal is a fantastic way to start your day. Whichever way you prepare them, oats provide your body with many health benefits. In celebration of National Oatmeal Day, Krystin Goodwin (@krystingoodwin) has a few recipe ideas, and tips on how to kickstart your day with this wholesome snack! Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins