Featured Research

from universities, journals, and other organizations

Biologists create first predictive computational model of gene networks that control development of sea-urchin embryos

Date:
August 29, 2012
Source:
California Institute of Technology
Summary:
As an animal develops from an embryo, its cells take diverse paths, eventually forming different body parts -- muscles, bones, heart. In order for each cell to know what to do during development, it follows a genetic blueprint, which consists of complex webs of interacting genes called gene regulatory networks. Biologists have spent the last decade or so detailing how these gene networks control development in sea-urchin embryos. Now, for the first time, they have built a computational model of one of these networks.

This image of a sea-urchin embryo shows where two different regulatory genes are being expressed, labeled in fluorescent green and red.
Credit: Caltech/Isabelle Peter

As an animal develops from an embryo, its cells take diverse paths, eventually forming different body parts -- muscles, bones, heart. In order for each cell to know what to do during development, it follows a genetic blueprint, which consists of complex webs of interacting genes called gene regulatory networks.

Biologists at the California Institute of Technology (Caltech) have spent the last decade or so detailing how these gene networks control development in sea-urchin embryos. Now, for the first time, they have built a computational model of one of these networks.

This model, the scientists say, does a remarkably good job of calculating what these networks do to control the fates of different cells in the early stages of sea-urchin development -- confirming that the interactions among a few dozen genes suffice to tell an embryo how to start the development of different body parts in their respective spatial locations. The model is also a powerful tool for understanding gene regulatory networks in a way not previously possible, allowing scientists to better study the genetic bases of both development and evolution.

"We have never had the opportunity to explore the significance of these networks before," says Eric Davidson, the Norman Chandler Professor of Cell Biology at Caltech. "The results are amazing to us."

The researchers described their computer model in a paper in the Proceedings of the National Academy of Sciences that appeared as an advance online publication on August 27.

The model encompasses the gene regulatory network that controls the first 30 hours of the development of endomesoderm cells, which eventually form the embryo's gut, skeleton, muscles, and immune system. This network -- so far the most extensively analyzed developmental gene regulatory network of any animal organism -- consists of about 50 regulatory genes that turn one another on and off.

To create the model, the researchers distilled everything they knew about the network into a series of logical statements that a computer could understand. "We translated all of our biological knowledge into very simple Boolean statements," explains Isabelle Peter, a senior research fellow and the first author of the paper. In other words, the researchers represented the network as a series of if-then statements that determine whether certain genes in different cells are on or off (i.e., if gene A is on, then genes B and C will turn off).

By computing the results of each sequence hour by hour, the model determines when and where in the embryo each gene is on and off. Comparing the computed results with experiments, the researchers found that the model reproduced the data almost exactly. "It works surprisingly well," Peter says.

Some details about the network may still be uncovered, the researchers say, but the fact that the model mirrors a real embryo so well shows that biologists have indeed identified almost all of the genes that are necessary to control these particular developmental processes. The model is accurate enough that the researchers can tweak specific parts -- for example, suppress a particular gene -- and get computed results that match those of previous experiments.

Allowing biologists to do these kinds of virtual experiments is precisely how computer models can be powerful tools, Peter says. Gene regulatory networks are so complex that it is almost impossible for a person to fully understand the role of each gene without the help of a computational model, which can reveal how the networks function in unprecedented detail.

Studying gene regulatory networks with models may also offer new insights into the evolutionary origins of species. By comparing the gene regulatory networks of different species, biologists can probe how they branched off from common ancestors at the genetic level.

So far, the researchers have only modeled one gene regulatory network, but their goal is to model the networks responsible for every part of a sea-urchin embryo, to build a model that covers not just the first 30 hours of a sea urchin's life but its entire embryonic development. Now that this modeling approach has been proven effective, Davidson says, creating a complete model is just a matter of time, effort, and resources.

The title of the PNAS paper is "Predictive computation of genomic logic processing functions in embryonic development." In addition to Peter and Davidson, the other author on the PNAS paper is Emmanuel Faure, a former Caltech postdoctoral scholar who is now at the Ιcole Polytechnique in France. This work was supported by the National Institute of Child Health and Human Development.


Story Source:

The above story is based on materials provided by California Institute of Technology. The original article was written by Marcus Woo. Note: Materials may be edited for content and length.


Journal Reference:

  1. I. S. Peter, E. Faure, E. H. Davidson. Predictive computation of genomic logic processing functions in embryonic development. Proceedings of the National Academy of Sciences, 2012; DOI: 10.1073/pnas.1207852109

Cite This Page:

California Institute of Technology. "Biologists create first predictive computational model of gene networks that control development of sea-urchin embryos." ScienceDaily. ScienceDaily, 29 August 2012. <www.sciencedaily.com/releases/2012/08/120829092145.htm>.
California Institute of Technology. (2012, August 29). Biologists create first predictive computational model of gene networks that control development of sea-urchin embryos. ScienceDaily. Retrieved April 19, 2014 from www.sciencedaily.com/releases/2012/08/120829092145.htm
California Institute of Technology. "Biologists create first predictive computational model of gene networks that control development of sea-urchin embryos." ScienceDaily. www.sciencedaily.com/releases/2012/08/120829092145.htm (accessed April 19, 2014).

Share This



More Computers & Math News

Saturday, April 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Facebook Announces Location-Sharing Feature 'Nearby Friends'

Facebook Announces Location-Sharing Feature 'Nearby Friends'

Newsy (Apr. 18, 2014) — Facebook's pending Nearby Friends feature will give users the option to share their nonspecific or specific locations with certain friends. Video provided by Newsy
Powered by NewsLook.com
Michaels Hack Compromises About 3 Million Credit Cards

Michaels Hack Compromises About 3 Million Credit Cards

Newsy (Apr. 18, 2014) — Michaels is now confirming that an eight-month security breach compromised about 3 million customers' credit and debit card data. Video provided by Newsy
Powered by NewsLook.com
Twitter Introduces Facebook-Style App Install Ads

Twitter Introduces Facebook-Style App Install Ads

Newsy (Apr. 17, 2014) — Twitter hopes to make money on app install ads, which has proven to be a successful strategy for Facebook. Video provided by Newsy
Powered by NewsLook.com
Heartbleed Hack Leads To Arrest

Heartbleed Hack Leads To Arrest

Newsy (Apr. 17, 2014) — A 19-year-old computer science student has been arrested in relation to a data breach of 900 social insurance numbers from Canada's revenue agency. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins