Featured Research

from universities, journals, and other organizations

Forest mortality and climate change: The big picture

Date:
September 9, 2012
Source:
Carnegie Institution
Summary:
Over the past two decades, extensive forest death triggered by hot and dry climatic conditions has been documented on every continent except Antarctica. Forest mortality due to drought and heat stress is expected to increase due to climate change. Although research has focused on isolated incidents of forest mortality, little is known about the potential effects of widespread forest die-offs.

Over the past two decades, extensive forest death triggered by hot and dry climatic conditions has been documented on every continent except Antarctica. Forest mortality due to drought and heat stress is expected to increase due to climate change. Although research has focused on isolated incidents of forest mortality, little is known about the potential effects of widespread forest die-offs.

A new analysis of the current literature on this topic by Carnegie's William and Leander Anderegg is published September 9 in Nature Climate Change.

Along with co-author Jeffrey Kane of Northern Arizona University, the Andereggs examined papers dealing with different aspects of forest die-off events from studies all over the world. They divided their findings into the effects on a forest community of trees and other species; on ecosystem processes as a whole; on services forests provide to humans; and on the climate.

"This study provides a state-of-the-art overview of the many benefits forests provide to humans, from water purification to climate regulation," said William Anderegg, "Many of these roles can be disrupted by the widespread tree mortality expected with climate change."

They found that heat and drought, including drought-related insect infestation, can disproportionately affect some species of trees, or can hit certain ages or sizes of trees particularly hard. This can result in long-term shifts in an area's dominant species, with the potential to trigger a transition into a different ecosystem, such as grassland. It can also impact the understory--the layer of vegetation under the treetops--as well as organisms living in the soil. More research on forest community impacts is needed, particularly on the trajectories of regrowth after forest die-off.

From an ecosystem perspective, forest die-off will also likely affect hydrological processes and nutrient cycles. Depending on the type of forest, soil moisture could be increased by the lack of tree-top interception of rainfall or decreased by evaporation due to more sun and wind exposure. Debris from fallen trees could also increase a forest's fire risk.

Forests also have an effect on the climate as a whole. Forests play an important role in determining the amount of heat and light that is reflected from the Earth and into space and in taking up carbon dioxide from the atmosphere. On one hand, forest mortality increases the reflection of the sun's energy back into space, thus providing a cooling effect. But on the other hand, the decomposition of fallen trees releases carbon into the atmosphere, thus producing a warming effect. Overall, whether forest die-offs result in local cooling or warming is expected to depend on the type of forest, the latitude, the amount of snow cover, and other complex ecosystem factors.

Mass tree mortality would likely cause substantial losses to the timber industry, even if saplings and seedlings were unaffected. Little research has been conducted on other types of forest products that humans use, such as fruit or nuts, but there would presumably be changes in those sectors as well. Recent research has examined other services provided by forests which would likely be affected by die-off, such as declines in real-estate property values following widespread tree mortality.

Overall, the analysis found that although there are many recent advances in understanding the effects of severe forest die-off, many critical research gaps remain. These gaps are especially critical in light of increasing forest die-off with climate change.

One urgent gap is how this summer's US-wide severe drought might affect forests. William Anderegg is helping to tackle this question by spearheading a project involving dozens of research groups from around the country.

"The varied nature of the consequences of forest mortality means that we need a multidisciplinary approach going forward, including ecologists, biogeochemists, hydrologists, economists, social scientists, and climate scientists," William Anderegg said. "A better understanding of forest die-off in response to climate change can inform forest management, business decisions, and policy."


Story Source:

The above story is based on materials provided by Carnegie Institution. Note: Materials may be edited for content and length.


Journal Reference:

  1. William R. L. Anderegg, Jeffrey M. Kane, Leander D. L. Anderegg. Consequences of widespread tree mortality triggered by drought and temperature stress. Nature Climate Change, 2012; DOI: 10.1038/nclimate1635

Cite This Page:

Carnegie Institution. "Forest mortality and climate change: The big picture." ScienceDaily. ScienceDaily, 9 September 2012. <www.sciencedaily.com/releases/2012/09/120909150444.htm>.
Carnegie Institution. (2012, September 9). Forest mortality and climate change: The big picture. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2012/09/120909150444.htm
Carnegie Institution. "Forest mortality and climate change: The big picture." ScienceDaily. www.sciencedaily.com/releases/2012/09/120909150444.htm (accessed April 20, 2014).

Share This



More Earth & Climate News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drought Concerns May Hurt Lake Tourism

Drought Concerns May Hurt Lake Tourism

AP (Apr. 18, 2014) Operators of recreational businesses on western reservoirs worry that ongoing drought concerns will keep boaters and other visitors from flocking to the popular summer attractions. (April 18) Video provided by AP
Powered by NewsLook.com
Man Claims He Found Loch Ness Monster With... Apple Maps?

Man Claims He Found Loch Ness Monster With... Apple Maps?

Newsy (Apr. 18, 2014) Andy Dixon showed the Daily Mail a screenshot of what he believes to be the mythical beast swimming just below the lake's surface. Video provided by Newsy
Powered by NewsLook.com
First Ever 'Female Penis' Discovered In Animal Kingdom

First Ever 'Female Penis' Discovered In Animal Kingdom

Newsy (Apr. 18, 2014) Not only are these newly discovered bugs' sex organs reversed, but they also mate for up to 70 hours. Video provided by Newsy
Powered by NewsLook.com
Ark. Man Finds 6-Carat Diamond At State Park

Ark. Man Finds 6-Carat Diamond At State Park

Newsy (Apr. 18, 2014) An Arkansas man has found a nearly 6.2-carat diamond, which he dubbed "The Limitless Diamond," at the Crater of Diamonds State Park. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins