Featured Research

from universities, journals, and other organizations

Reversible oxygen-sensing ‘switching’ mechanism discovered

Date:
September 10, 2012
Source:
University of East Anglia
Summary:
Bacteria that cause disease in humans have a ‘reversible switching mechanism’ that allows them to adapt to environments lacking oxygen, scientists have found. The findings provide a new insight into how bacteria sense and adapt to oxygenated atmospheres, and uncover a new ‘antioxidant’ pathway by which certain types of damaged proteins can be repaired.

Bacteria that cause disease in humans have a 'reversible switching mechanism' that allows them to adapt to environments lacking oxygen, scientists at the University of East Anglia (UEA) have found.

Published September 10 in the journal Proceedings of the National Academy of Sciences USA, the findings provide a new insight into how bacteria sense and adapt to oxygenated atmospheres, and uncover a new 'antioxidant' pathway by which certain types of damaged proteins can be repaired.

The research focussed on the regulatory protein fumarate and nitrate reduction (FNR), which senses the presence of oxygen in the environment and 'switches' off and on specific genes in pathogens such as E. coli when there is no oxygen present -- conditions often found in the human intestinal tract.

It was conducted by researchers at UEA, the University of Georgia and the University of Sheffield.

Oxygen is sensed by FNR through a special cofactor -- called an iron-sulfur cluster -- that undergoes conversion from one form to another, smaller one, thereby causing the protein to change shape (the 'switch') and leading to the turning off of genes associated with growth without oxygen.

Joint lead author Prof Nick Le Brun, from UEA's School of Chemistry, said: "This study has revealed important new details of FNR's switching mechanism, demonstrating that the cluster conversion can go in reverse, so that the switch is a reversible one.

"This also highlights a new general mechanism by which this type of protein can be repaired if it gets damaged -- which can often happen, as iron-sulfur clusters are highly reactive towards oxygen and other species that are associated with oxidative stress, which is linked to a whole host of diseases, as well as aging."

The findings could have a number of implications for the developments of new antibiotics and the study of iron-sulfur cluster proteins, which are found in all types of cells where they play crucial roles in many processes including respiration, DNA replication and DNA repair.

The clusters can also be damaged by oxidative stress -- conditions that cause damage to cellular components that lead to the activation of specific defence responses -- which is thought to be involved in the development of many diseases including cancer, Parkinson's and Alzheimer's.


Story Source:

The above story is based on materials provided by University of East Anglia. Note: Materials may be edited for content and length.


Journal Reference:

  1. Bo Zhang, Jason C. Crack, Sowmya Subramanian, Jeffrey Green, Andrew J. Thomson, Nick E. Le Brun, and Michael K. Johnson. Reversible cycling between cysteine persulfide-ligated [2Fe-2S] and cysteine-ligated [4Fe-4S] clusters in the FNR regulatory protein PNAS 2012. PNAS, September 10, 2012 DOI: 10.1073/pnas.1208787109

Cite This Page:

University of East Anglia. "Reversible oxygen-sensing ‘switching’ mechanism discovered." ScienceDaily. ScienceDaily, 10 September 2012. <www.sciencedaily.com/releases/2012/09/120910151615.htm>.
University of East Anglia. (2012, September 10). Reversible oxygen-sensing ‘switching’ mechanism discovered. ScienceDaily. Retrieved September 15, 2014 from www.sciencedaily.com/releases/2012/09/120910151615.htm
University of East Anglia. "Reversible oxygen-sensing ‘switching’ mechanism discovered." ScienceDaily. www.sciencedaily.com/releases/2012/09/120910151615.htm (accessed September 15, 2014).

Share This



More Plants & Animals News

Monday, September 15, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Conservationists Face Uphill PR Battle With New Shark Rules

Conservationists Face Uphill PR Battle With New Shark Rules

Newsy (Sep. 14, 2014) — New conservation measures for shark fishing face an uphill PR battle in the fight to slow shark extinction. Video provided by Newsy
Powered by NewsLook.com
Shocker: Journalists Are Utterly Addicted To Coffee

Shocker: Journalists Are Utterly Addicted To Coffee

Newsy (Sep. 13, 2014) — A U.K. survey found that journalists consumed the most amount of coffee, but that's only the tip of the coffee-related statistics iceberg. Video provided by Newsy
Powered by NewsLook.com
'Magic Mushrooms' Could Help Smokers Quit

'Magic Mushrooms' Could Help Smokers Quit

Newsy (Sep. 11, 2014) — In a small study, researchers found that the majority of long-time smokers quit after taking psilocybin pills and undergoing therapy sessions. Video provided by Newsy
Powered by NewsLook.com
Spinosaurus Could Be First Semi-Aquatic Dinosaur

Spinosaurus Could Be First Semi-Aquatic Dinosaur

Newsy (Sep. 11, 2014) — New research has shown that the Spinosaurus, the largest carnivorous dinosaur, might have been just as well suited for life in the water as on land. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:  

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile iPhone Android Web
    Follow Facebook Twitter Google+
    Subscribe RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins