Featured Research

from universities, journals, and other organizations

Reversible oxygen-sensing ‘switching’ mechanism discovered

Date:
September 10, 2012
Source:
University of East Anglia
Summary:
Bacteria that cause disease in humans have a ‘reversible switching mechanism’ that allows them to adapt to environments lacking oxygen, scientists have found. The findings provide a new insight into how bacteria sense and adapt to oxygenated atmospheres, and uncover a new ‘antioxidant’ pathway by which certain types of damaged proteins can be repaired.

Bacteria that cause disease in humans have a 'reversible switching mechanism' that allows them to adapt to environments lacking oxygen, scientists at the University of East Anglia (UEA) have found.

PublishedSeptember 10 in the journal Proceedings of the National Academy of Sciences USA, the findings provide a new insight into how bacteria sense and adapt to oxygenated atmospheres, and uncover a new 'antioxidant' pathway by which certain types of damaged proteins can be repaired.

The research focussed on the regulatory protein fumarate and nitrate reduction (FNR), which senses the presence of oxygen in the environment and 'switches' off and on specific genes in pathogens such as E. coli when there is no oxygen present -- conditions often found in the human intestinal tract.

It was conducted by researchers at UEA, the University of Georgia and the University of Sheffield.

Oxygen is sensed by FNR through a special cofactor -- called an iron-sulfur cluster -- that undergoes conversion from one form to another, smaller one, thereby causing the protein to change shape (the 'switch') and leading to the turning off of genes associated with growth without oxygen.

Joint lead author Prof Nick Le Brun, from UEA's School of Chemistry, said: "This study has revealed important new details of FNR's switching mechanism, demonstrating that the cluster conversion can go in reverse, so that the switch is a reversible one.

"This also highlights a new general mechanism by which this type of protein can be repaired if it gets damaged -- which can often happen, as iron-sulfur clusters are highly reactive towards oxygen and other species that are associated with oxidative stress, which is linked to a whole host of diseases, as well as aging."

The findings could have a number of implications for the developments of new antibiotics and the study of iron-sulfur cluster proteins, which are found in all types of cells where they play crucial roles in many processes including respiration, DNA replication and DNA repair.

The clusters can also be damaged by oxidative stress -- conditions that cause damage to cellular components that lead to the activation of specific defence responses -- which is thought to be involved in the development of many diseases including cancer, Parkinson's and Alzheimer's.


Story Source:

The above story is based on materials provided by University of East Anglia. Note: Materials may be edited for content and length.


Journal Reference:

  1. Bo Zhang, Jason C. Crack, Sowmya Subramanian, Jeffrey Green, Andrew J. Thomson, Nick E. Le Brun, and Michael K. Johnson. Reversible cycling between cysteine persulfide-ligated [2Fe-2S] and cysteine-ligated [4Fe-4S] clusters in the FNR regulatory protein PNAS 2012. PNAS, September 10, 2012 DOI: 10.1073/pnas.1208787109

Cite This Page:

University of East Anglia. "Reversible oxygen-sensing ‘switching’ mechanism discovered." ScienceDaily. ScienceDaily, 10 September 2012. <www.sciencedaily.com/releases/2012/09/120910151615.htm>.
University of East Anglia. (2012, September 10). Reversible oxygen-sensing ‘switching’ mechanism discovered. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2012/09/120910151615.htm
University of East Anglia. "Reversible oxygen-sensing ‘switching’ mechanism discovered." ScienceDaily. www.sciencedaily.com/releases/2012/09/120910151615.htm (accessed July 23, 2014).

Share This




More Plants & Animals News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Stone Fruit Listeria Scare Causes Sweeping Recall

Stone Fruit Listeria Scare Causes Sweeping Recall

Newsy (July 22, 2014) The Wawona Packing Company has issued a voluntary recall on the stone fruit it distributes due to a possible Listeria outbreak. Video provided by Newsy
Powered by NewsLook.com
Michigan Plant's Goal: Flower and Die

Michigan Plant's Goal: Flower and Die

AP (July 22, 2014) An 80-year-old agave plant, which is blooming for the first and only time at a University of Michigan conservatory, will die when it's done (July 22) Video provided by AP
Powered by NewsLook.com
Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Newsy (July 22, 2014) The 83 new genetic markers could open dozens of new avenues for schizophrenia treatment research. Video provided by Newsy
Powered by NewsLook.com
CDC Head Concerned About a Post-Antibiotic Era

CDC Head Concerned About a Post-Antibiotic Era

AP (July 22, 2014) Sounding alarms about the growing threat of antibiotic resistance, CDC Director Tom Frieden warned Tuesday if the global community does not confront the problem soon, the world will be living in a devastating post-antibiotic era. (July 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins