Featured Research

from universities, journals, and other organizations

How organisms evolve new functions: Evolution is as complicated as 1-2-3

Date:
September 19, 2012
Source:
Michigan State University
Summary:
Biologists have documented the step-by-step process in which organisms evolve new functions. The results are revealed through an in-depth, genomics-based analysis that decodes how E. coli bacteria figured out how to supplement a traditional diet of glucose with an extra course of citrate.

Zachary Blount, postdoctoral researcher in MSU’s BEACON Center for the Study of Evolution in Action, led a team of researchers in documenting the step-by-step process in which organisms evolve new functions.
Credit: Courtesy of Brian Baer

A team of researchers at Michigan State University has documented the step-by-step process in which organisms evolve new functions.

The results, published in the current issue of Nature, are revealed through an in-depth, genomics-based analysis that decodes how E. coli bacteria figured out how to supplement a traditional diet of glucose with an extra course of citrate.

"It's pretty nifty to see a new biological function evolve," said Zachary Blount, postdoctoral researcher in MSU's BEACON Center for the Study of Evolution in Action. "The first citrate-eaters were just barely able to grow on the citrate, but they got much better over time. We wanted to understand the changes that allowed the bacteria to evolve this new ability. We were lucky to have a system that allowed us to do so."

Normal E. coli can't digest citrate when oxygen is present. In fact, it's a distinct hallmark of E. coli. They can't eat citrate because E. coli don't express the right protein to absorb citrate molecules.

To decipher the responsible mutations, Blount worked with Richard Lenski, MSU Hannah Distinguished Professor of Microbiology and Molecular Genetics. Lenski's long-term experiment, cultivating cultures of fast-growing E. coli, was launched in 1988 and has allowed him and his teammates to study more than more than 56,000 generations of bacterial evolution.

The experiment demonstrates natural selection at work. And because samples are frozen and available for later study, when something new emerges scientists can go back to earlier generations to look for the steps that happened along the way.

"We first saw the citrate-using bacteria around 33,000 generations," Lenski explained. "But Zack was able to show that some of the important mutations had already occurred before then by replaying evolution from different intermediate stages. He showed you could re-evolve the citrate-eaters, but only after some of the other pieces of the puzzle were in place."

In the Nature paper, Blount and his teammates analyzed 29 genomes from different generations to find the mutational pieces of the puzzle. They uncovered a three-step process in which the bacteria developed this new ability.

The first stage was potentiation, when the E. coli accumulated at least two mutations that set the stage for later events. The second step, actualization, is when the bacteria first began eating citrate, but only just barely nibbling at it. The final stage, refinement, involved mutations that greatly improved the initially weak function. This allowed the citrate eaters to wolf down their new food source and to become dominant in the population.

"We were particularly excited about the actualization stage," Blount said. "The actual mutation involved is quite complex. It re-arranged part of the bacteria's DNA, making a new regulatory module that had not existed before. This new module causes the production of a protein that allows the bacteria to bring citrate into the cell when oxygen is present. That is a new trick for E. coli."

The change was far from normal, Lenski said.

"It wasn't a typical mutation at all, where just one base-pair, one letter, in the genome is changed," he said. "Instead, part of the genome was copied so that two chunks of DNA were stitched together in a new way. One chunk encoded a protein to get citrate into the cell, and the other chunk caused that protein to be expressed."

Additional co-authors include Jeff Barrick, University of Texas, and Carla Davidson, University of Calgary.

The research was funded in part by the National Science Foundation.


Story Source:

The above story is based on materials provided by Michigan State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Zachary D. Blount, Jeffrey E. Barrick, Carla J. Davidson, Richard E. Lenski. Genomic analysis of a key innovation in an experimental Escherichia coli population. Nature, 2012; DOI: 10.1038/nature11514

Cite This Page:

Michigan State University. "How organisms evolve new functions: Evolution is as complicated as 1-2-3." ScienceDaily. ScienceDaily, 19 September 2012. <www.sciencedaily.com/releases/2012/09/120919135411.htm>.
Michigan State University. (2012, September 19). How organisms evolve new functions: Evolution is as complicated as 1-2-3. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2012/09/120919135411.htm
Michigan State University. "How organisms evolve new functions: Evolution is as complicated as 1-2-3." ScienceDaily. www.sciencedaily.com/releases/2012/09/120919135411.htm (accessed April 20, 2014).

Share This



More Plants & Animals News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Vermont Goat Meat Gives Refugees Taste of Home

Vermont Goat Meat Gives Refugees Taste of Home

AP (Apr. 18, 2014) Dairy farmers and ethnic groups in Vermont are both benefiting from a unique collaborative effort that's feeding a growing need for fresh and affordable goat meat. (April 18) Video provided by AP
Powered by NewsLook.com
Man Claims He Found Loch Ness Monster With... Apple Maps?

Man Claims He Found Loch Ness Monster With... Apple Maps?

Newsy (Apr. 18, 2014) Andy Dixon showed the Daily Mail a screenshot of what he believes to be the mythical beast swimming just below the lake's surface. Video provided by Newsy
Powered by NewsLook.com
First Ever 'Female Penis' Discovered In Animal Kingdom

First Ever 'Female Penis' Discovered In Animal Kingdom

Newsy (Apr. 18, 2014) Not only are these newly discovered bugs' sex organs reversed, but they also mate for up to 70 hours. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins