Featured Research

from universities, journals, and other organizations

Scientists bring the heat to refine renewable biofuel production

Date:
September 27, 2012
Source:
Arizona State University
Summary:
Perhaps inspired by Arizona's blazing summers, scientists have developed a new method that relies on heat to improve the yield and lower the costs of high-energy biofuels production, making renewable energy production more of an everyday reality.

Roy Curtiss and Xinyao Liu have been genetically optimizing cyanobacteria for biofuel production.
Credit: Image courtesy of Arizona State University

Perhaps inspired by Arizona's blazing summers, Arizona State University scientists have developed a new method that relies on heat to improve the yield and lower the costs of high-energy biofuels production, making renewable energy production more of an everyday reality.

ASU has been at the forefront of algal research for renewable energy production. Since 2007, with support from federal, state and industry funding, ASU has spearheaded several projects that utilize photosynthetic microbes, called cyanobacteria, as a potential new source of renewable, carbon-neutral fuels. Efforts have focused on developing cyanobacteria as a feedstock for biodiesel production, as well as benchtop and large-scale photobioreactors to optimize growth and production.

ASU Biodesign Institute researcher Roy Curtiss, a microbiologist who uses genetic engineering of bacteria to develop new vaccines, has adapted a similar approach to make better biofuel-producing cyanobacteria.

"We keep trying to reach ever deeper into our genetic bag of tricks and optimize bacterial metabolic engineering to develop an economically viable, truly green route for biofuel production," said Roy Curtiss, director of the Biodesign Institute's Centers for Infectious Diseases and Vaccinology and Microbial Genetic Engineering as well as professor in the School of Life Sciences.

Cyanobacteria are like plants, dependent upon renewable ingredients including sunlight, carbon dioxide and water that, through genetic engineering, can be altered to favor biodiesel production. Cyanobacteria offer attractive advantages over the use of plants like corn or switchgrass, producing many times the energy yield with energy input from the sun and without the necessity of taking arable cropland out of production.

Colleague Xinyao Liu and Curtiss have spent the last few years modifying these microbes. Their goal is to bypass costly processing steps (such as cell disruption, filtration) for optimal cyanobacterial biofuel production.

"We wanted to develop strains of cyanobacteria that basically can process themselves," said Curtiss. "A couple of years ago, we developed a Green Recovery process that is triggered by removing carbon dioxide to control the synthesis of enzymes, called lipases, that degrade the cell membranes and release the microbes' precious cargo of free fatty acids that can be converted to biofuels,"

However, when growth of cyanobacteria is scaled up to meet industrial needs, they become dense, and the self-shading that occurs in concentrated cultures, does not let in enough light to produce enough of the lipases to efficiently drive the process. Thus the original Green Recovery was light dependent and maximally efficient at sub-optimal culture densities.

Curtiss' team looked again at nature to improve their Green Recovery method. The process uses enzymes found in nature called thermostable lipases synthesized by thermophilic organisms that grow at high temperatures such as in hot springs. These thermostable lipases break down fats and membrane lipids into the fatty acid biodiesel precursors, but only at high temperatures. The team's new process, called thermorecovery, uses a heat-triggered, self-destruct system. By taking a culture and shifting to a high temperature, the lipases are called into action. This process occurs with concentrated cultures in the dark under conditions that would be very favorable for an industrial process.

They tested a total of 7 different lipases from microbes that thrive in hot springs under very high temperatures, a scorching 60-70 C (158F). The research team swapped each lipase gene into a cyanobacteria strain that grows normally at 30 C (86 F) and tested the new strains.

They found the Fnl lipase from Feridobacterium nodosum, an extremophile found in the hot springs of New Zealand, released the most fatty acids. The highest yield occurred when the carbon dioxide was removed from the cells for one day (to turn on the genes making the lipases), then treated at 46C (114F) for two days (for maximum lipase activity).

The yield was 15 percent higher than the Green Recovery method, and because there were less reagents used, time (one day for thermorecovery vs. one week for Green Recovery) and space for the recovery. Thermorecovery resulted in an estimated 80% cost savings.

Furthermore, in a continuous semi-batch production experiment, the team showed that daily harvested cultures released could release a high level of fatty acid and the productivity could last for at least 20 days. Finally, the water critical to growing the cultures could be recycled to maintain the growth of the original culture.

"Our latest results are encouraging and we are confident of making further improvements to achieve enhanced productivity in strains currently under construction and development," said Curtiss. "In addition, optimizing growth conditions associated with scale-up will also improve productivity."


Story Source:

The above story is based on materials provided by Arizona State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Xinyao Liu, Roy Curtiss. Thermorecovery of cyanobacterial fatty acids at elevated temperatures. Journal of Biotechnology, 2012; 161 (4): 445 DOI: 10.1016/j.jbiotec.2012.08.013

Cite This Page:

Arizona State University. "Scientists bring the heat to refine renewable biofuel production." ScienceDaily. ScienceDaily, 27 September 2012. <www.sciencedaily.com/releases/2012/09/120927104305.htm>.
Arizona State University. (2012, September 27). Scientists bring the heat to refine renewable biofuel production. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2012/09/120927104305.htm
Arizona State University. "Scientists bring the heat to refine renewable biofuel production." ScienceDaily. www.sciencedaily.com/releases/2012/09/120927104305.htm (accessed July 31, 2014).

Share This




More Earth & Climate News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Visitors Feel Part of the Pack at Wolf Preserve

Visitors Feel Part of the Pack at Wolf Preserve

AP (July 31, 2014) Seacrest Wolf Preserve on the northern Florida panhandle allows more than 10,000 visitors each year to get up close and personal with Arctic and British Columbian Wolves. (July 31) Video provided by AP
Powered by NewsLook.com
Florida Panther Rebound Upsets Ranchers

Florida Panther Rebound Upsets Ranchers

AP (July 31, 2014) With Florida's panther population rebounding, some ranchers complain the protected predators are once again killing their calves. (July 31) Video provided by AP
Powered by NewsLook.com
Big Waves In Arctic Ocean Threaten Polar Ice

Big Waves In Arctic Ocean Threaten Polar Ice

Newsy (July 30, 2014) Big waves in parts of the Arctic Ocean are unprecedented, mainly because they used to be covered in ice. Video provided by Newsy
Powered by NewsLook.com
Raw: Thousands Flocking to German Crop Circle

Raw: Thousands Flocking to German Crop Circle

AP (July 30, 2014) Thousands of people are trekking to a Bavarian farmer's field to check out a mysterious set of crop circles. (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins