Featured Research

from universities, journals, and other organizations

Vast differences in polar ocean microbial communities

October 9, 2012
Desert Research Institute
An international team of scientists has found that a clear difference exists between the marine microbial communities in the Southern and Arctic oceans. Their report contributes to a better understanding of the biodiverisity of marine life at the poles and its biogeography.

An international team of scientists, led by Dr. Alison Murray, an Associate Research Professor at the Desert Research Institute's Division of Earth and Ecosystem Sciences reported this week in the Proceedings of the National Academy of Science (PNAS) that a clear difference exists between the marine microbial communities in the Southern and Artic oceans, contributing to a better understanding of the biodiverisity of marine life at the poles and its biogeography.

Related Articles

This new understanding not only sheds light on newly recognized biodiversity patterns but reinforces the importance of study of Earth's polar regions in the face of a changing climate and identifies further need for research on the impacts of sea ice, seasonal shifts, and freshwater input in both regions.

Findings from the most comprehensive comparison of bacterioplankton diversity at both of Earth's polar oceans showed that about 75 percent of the organisms at each pole are different.

"We believe that significant differences in the environmental conditions at each pole and unique selection mechanisms in the Artic and Southern oceans are at play in controlling surface and deep ocean community structure," said Murray, whose participation on this new report resulted from her role as a representative for the U.S. on the Scientific Committee for Antarctic Research (SCAR). Murray, a polar researcher for the past 17 years, has participated in 14 expeditions to the Southern Ocean and Antarctic continent to conduct research and educational activities and worked on the Arctic tundra lake ecosystems in northern Alaska. She also recently authored a policy forum article on major conservation challenges facing the Antarctic region that was published by Science magazine in July, 2012.

Scientists found that the differences between the two poles were most pronounced in the microbial communities sampled from the coastal regions, which is -- "likely a result of the significant differences in freshwater sourcing to the two polar oceans," said Dr. Jean-Fran็ois Ghiglione, lead author of the report and research professor at the French Microbial Oceanography Laboratory (Observatoire Oc้anologique) in Banyuls-Sur-Mer.

Dr. Ghiglione adds that in the Southern Ocean, glacial melt-water accounts for most of the freshwater that flows into the system. In contrast, the Arctic Ocean receives much bigger pulses of freshwater from several large river systems with huge continental drainage basins, in addition to glacial melt-water.

While the surface microbial communities appear to be dominated by environmental selection, noted the report's authors, the deep ocean communities are more constrained by historical events and connected through oceanic circulation, providing evidence for biogeographically defined communities in the global ocean.

This unique collaboration was the result of an international effort coordinated by Murray involving scientists from six countries -- Canada, France, New Zealand, Spain, Sweden and the United States. The collaboration was made possible through the International Polar Year, a global research campaign, and the Sloan Foundation's Census of Marine Life Program, which stimulated field efforts at both poles as well as a separate program targeting marine microbes -- International Census of Marine Microbes (ICoMM). Further, the National Polar Research programs from each of the six contributing nations, including the National Science Foundation, supported field expeditions.

"The collective energies required to bring this study to fruition was remarkable," Murray said. "By using similar strategies and technologies in sample collection through next-generation sequencing, we have a highly comparable, unprecedented dataset that for the first time has allowed us to take an in-depth look across a large number of samples into the similarities of the microbial communities between the two polar oceans."

Scientists compared 20 samples from the Southern Ocean against 24 similar samples from the Arctic Ocean taken from both surface and deep waters sites. They also included an additional 48 samples from Earth's lower latitudes to investigate the polar signal in global marine bacterial biogeography.

The researchers specifically compared samples from coastal and open oceans and between winter and summer seasons, to test whether or how environmental conditions and dispersal patterns shape microbial communities in the polar oceans. Samples were processed and analyzed by ICoMM, using an identical approach based on pyrosequencing and involving more than 800,000 sequences from each of the 92 samples.

"Our analyses identified a number of key organisms in both poles in the surface and deep ocean waters that are important in driving the differences between the communities," Murray said. "Still, further research is needed to address the ecological and evolutionary processes that underlie these unique patterns."

Story Source:

The above story is based on materials provided by Desert Research Institute. Note: Materials may be edited for content and length.

Journal Reference:

  1. J.-F. Ghiglione, P. E. Galand, T. Pommier, C. Pedros-Alio, E. W. Maas, K. Bakker, S. Bertilson, D. L. Kirchman, C. Lovejoy, P. L. Yager, A. E. Murray. Pole-to-pole biogeography of surface and deep marine bacterial communities. Proceedings of the National Academy of Sciences, 2012; DOI: 10.1073/pnas.1208160109

Cite This Page:

Desert Research Institute. "Vast differences in polar ocean microbial communities." ScienceDaily. ScienceDaily, 9 October 2012. <www.sciencedaily.com/releases/2012/10/121009093032.htm>.
Desert Research Institute. (2012, October 9). Vast differences in polar ocean microbial communities. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2012/10/121009093032.htm
Desert Research Institute. "Vast differences in polar ocean microbial communities." ScienceDaily. www.sciencedaily.com/releases/2012/10/121009093032.htm (accessed December 19, 2014).

Share This

More From ScienceDaily

More Plants & Animals News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations

Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) — The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) — As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) — Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
The Hottest Food Trends for 2015

The Hottest Food Trends for 2015

Buzz60 (Dec. 17, 2014) — Urbanspoon predicts whicg food trends will dominate the culinary scene in 2015. Mara Montalbano (@maramontalbano) has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.


Breaking News:

More Coverage

Arctic and Southern Oceans Appear to Determine the Composition of Microbial Populations

Oct. 11, 2012 — Differing contributions of freshwater from glaciers and streams to the Arctic and Southern oceans appear to be responsible for the fact that the majority of microbial communities that thrive near the ... read more

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News


Free Subscriptions

Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile

Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins