Featured Research

from universities, journals, and other organizations

How the body uses vitamin B to recognize bacterial infection

Date:
October 10, 2012
Source:
University of Melbourne
Summary:
An Australian research team has discovered how specialized immune cells recognize products of vitamin B synthesis that are unique to bacteria and yeast, triggering the body to fight infection.

An Australian research team has discovered how specialised immune cells recognise products of vitamin B synthesis that are unique to bacteria and yeast, triggering the body to fight infection.

The finding opens up potential targets to improve treatments or to develop a vaccine for tuberculosis.

The study, jointly led by the University of Melbourne and Monash University and published today in the journal Nature, has revealed for the first time that the highly abundant mucosal associated invariant T cells (MAIT cells), recognise products of vitamin B synthesis from bacteria and yeast in an early step to activating the immune system.

The research revealed how by-products of bacterial vitamin synthesis, including some derived from Folic acid or vitamin B9 and Riboflavin or vitamin B2, could be captured by the immune receptor MR1 thus fine-tuning the activity of MAIT cells.

Dr Lars Kjer-Nielsen from the University of Melbourne led the five year study.

"Humans are unable to make vitamin B and obtain it mostly from diet. Because bacteria can synthesise vitamin B, our immune system uses this as a point of difference to recognise infection," he said.

"Given the relative abundance of the MAIT cells lining mucosal and other surfaces, such as the intestine, the mouth, lungs, it is quite probable that they play a protective role in many infections from thrush to tuberculosis.

"This is a significant discovery that unravels the long sought target of MAIT cells and their role in immunity to infection."

Professor James McCluskey of the Department of Microbiology and Immunology at the University of Melbourne said the discovery opened up opportunities for vaccine development and other potential therapeutics.

"This is a major breakthrough in which Australian researchers have beaten many strong research teams around the world, becoming the first to unlock the mystery of what drives a key component of our immune system," he said.

Monash University's Professor Jamie Rossjohn said the findings had major implications for understanding the interplay between gut bacteria and the immune system.

"Some vitamin by-products appear to drive immunity while others dampen it," Professor Rossjohn said.

The next step is to explore whether MAIT cells might also be involved in intestinal or mucosal disorders such as inflammatory bowel disease and irritable bowel syndrome.

"This discovery now cracks open a new field in immunology and we can expect many research groups to focus their attention on this system," Professor Rossjohn said.

"The discovery also involved collaborators at Melbourne's Bio21 Molecular Science and Biotechnology Institute, Metabolomics Australia and the University of Queensland, reflecting the importance of collaboration between researchers to be globally competitive," Professor McCluskey said.

The research was supported by the Australian Research Council and the National Health and Medical Research Council of Australia.


Story Source:

The above story is based on materials provided by University of Melbourne. Note: Materials may be edited for content and length.


Journal Reference:

  1. Lars Kjer-Nielsen, Onisha Patel, Alexandra J. Corbett, Jιrτme Le Nours, Bronwyn Meehan, Ligong Liu, Mugdha Bhati, Zhenjun Chen, Lyudmila Kostenko, Rangsima Reantragoon, Nicholas A. Williamson, Anthony W. Purcell, Nadine L. Dudek, Malcolm J. McConville, Richard A. J. O’Hair, George N. Khairallah, Dale I. Godfrey, David P. Fairlie, Jamie Rossjohn, James McCluskey. MR1 presents microbial vitamin B metabolites to MAIT cells. Nature, 2012; DOI: 10.1038/nature11605

Cite This Page:

University of Melbourne. "How the body uses vitamin B to recognize bacterial infection." ScienceDaily. ScienceDaily, 10 October 2012. <www.sciencedaily.com/releases/2012/10/121010131444.htm>.
University of Melbourne. (2012, October 10). How the body uses vitamin B to recognize bacterial infection. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2012/10/121010131444.htm
University of Melbourne. "How the body uses vitamin B to recognize bacterial infection." ScienceDaily. www.sciencedaily.com/releases/2012/10/121010131444.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) — Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) — The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) — Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) — New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins