Featured Research

from universities, journals, and other organizations

Loss of essential blood cell gene leads to anemia

Date:
November 7, 2012
Source:
Brigham and Women's Hospital
Summary:
Researchers have discovered a new gene that regulates hemoglobin synthesis during red blood cell formation.

Researchers at Brigham and Women's Hospital (BWH) have discovered a new gene that regulates hemoglobin synthesis during red blood cell formation. The findings advance the biomedical community's understanding and treatment of human anemias and mitochondrial disorders.

The study was published online on November 7, 2012 in Nature.

The researchers used an unbiased zebrafish genetic screen to clone mitochondrial ATPase inhibitory factor-1 gene, or Atpif1. The gene allows animals -- zebrafish, mice and humans for instance -- to efficiently make hemoglobin. Hemoglobin is the protein in red blood cells responsible for transporting oxygen in the blood.

The researchers found that loss of Atpif1 causes severe anemia. Moreover, the researchers uncovered a broader mechanistic role for Atpif1 -- regulating the enzymatic activity of ferrochelatase, or Fech. Fech is the terminal enzyme in heme (a component of hemoglobin) synthesis.

"Our study has established a unique functional link between Atpif1-regulated mitochondrial pH, redox potential, and [2Fe-2S] cluster binding to Fech in modulating its heme synthesis," said Dhvanit Shah, PhD, BWH Division of Hematology, Department of Medicine, first study author.

The researchers were also able to produce data on the human version of Atpif1, noting its functional importance for normal red blood cell differentiation, and noting that a deficiency may contribute to human diseases, such as congenital sideroblastic anemias and other diseases related to dysfunctional mitochondria (the energy powerhouses of cells).

"Discovering the novel mechanism of Atpif1 as a regulator of heme synthesis advances the understanding of mitochondrial heme homeostasis and red blood cell development," said Barry Paw, MD, PhD, BWH Division of Hematology, Department of Medicine, senior study author.

Shah and Paw continue to identify new genes responsible for hematopoietic stem cell development and red cell differentiation. Their identification of new genes will elucidate the new mechanisms regulating hematopoiesis -- the formation of blood cell components. Their work not only provides greater insight into human congenital anemias, but also new opportunities for improved therapies.


Story Source:

The above story is based on materials provided by Brigham and Women's Hospital. Note: Materials may be edited for content and length.


Journal Reference:

  1. Dhvanit I. Shah, Naoko Takahashi-Makise, Jeffrey D. Cooney, Liangtao Li, Iman J. Schultz, Eric L. Pierce, Anupama Narla, Alexandra Seguin, Shilpa M. Hattangadi, Amy E. Medlock, Nathaniel B. Langer, Tamara A. Dailey, Slater N. Hurst, Danilo Faccenda, Jessica M. Wiwczar, Spencer K. Heggers, Guillaume Vogin, Wen Chen, Caiyong Chen, Dean R. Campagna, Carlo Brugnara, Yi Zhou, Benjamin L. Ebert, Nika N. Danial, Mark D. Fleming, Diane M. Ward, Michelangelo Campanella, Harry A. Dailey, Jerry Kaplan, Barry H. Paw. Mitochondrial Atpif1 regulates haem synthesis in developing erythroblasts. Nature, 2012; DOI: 10.1038/nature11536

Cite This Page:

Brigham and Women's Hospital. "Loss of essential blood cell gene leads to anemia." ScienceDaily. ScienceDaily, 7 November 2012. <www.sciencedaily.com/releases/2012/11/121107132902.htm>.
Brigham and Women's Hospital. (2012, November 7). Loss of essential blood cell gene leads to anemia. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2012/11/121107132902.htm
Brigham and Women's Hospital. "Loss of essential blood cell gene leads to anemia." ScienceDaily. www.sciencedaily.com/releases/2012/11/121107132902.htm (accessed April 20, 2014).

Share This



More Health & Medicine News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nine-Month-Old Baby Can't Open His Mouth

Nine-Month-Old Baby Can't Open His Mouth

Newsy (Apr. 19, 2014) Nine-month-old Wyatt Scott was born with a rare disorder called congenital trismus, which prevents him from opening his mouth. Video provided by Newsy
Powered by NewsLook.com
'Holy Grail' Of Weight Loss? New Find Could Be It

'Holy Grail' Of Weight Loss? New Find Could Be It

Newsy (Apr. 18, 2014) In a potential breakthrough for future obesity treatments, scientists have used MRI scans to pinpoint brown fat in a living adult for the first time. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com
Scientists Create Stem Cells From Adult Skin Cells

Scientists Create Stem Cells From Adult Skin Cells

Newsy (Apr. 17, 2014) The breakthrough could mean a cure for some serious diseases and even the possibility of human cloning, but it's all still a way off. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

More Coverage


Loss of Essential Blood Cell Gene Leads to Anemia

Nov. 13, 2012 Scientists have discovered a new gene that regulates heme synthesis in red blood cell formation. Heme is the deep-red, iron-containing component of hemoglobin, the protein in red blood cells ... read more
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins