Featured Research

from universities, journals, and other organizations

Probing the mystery of the venus fly trap's botanical bite

Date:
November 16, 2012
Source:
American Physical Society's Division of Fluid Dynamics
Summary:
Plants lack muscles, yet in only a tenth of a second, the meat-eating Venus fly trap hydrodynamically snaps its leaves shut to trap an insect meal. This astonishingly rapid display of botanical movement has long fascinated biologists. Commercially, understanding the mechanism of the Venus fly trap's leaf snapping may one day help improve products such as release-on-command coatings and adhesives, electronic circuits, optical lenses, and drug delivery.

Plants lack muscles, yet in only a tenth of a second, the meat-eating Venus fly trap hydrodynamically snaps its leaves shut to trap an insect meal.
Credit: © Svenja98 / Fotolia

Plants lack muscles, yet in only a tenth of a second, the meat-eating Venus fly trap hydrodynamically snaps its leaves shut to trap an insect meal. This astonishingly rapid display of botanical movement has long fascinated biologists. Commercially, understanding the mechanism of the Venus fly trap's leaf snapping may one day help improve products such as release-on-command coatings and adhesives, electronic circuits, optical lenses, and drug delivery.

Related Articles


Now a team of French physicists from the National Center for Scientific Research (CNRS) and Aix-Marseille University in Marseille, France, is working to understand this movement. They will present their findings at 65th meeting of the American Physical Society's (APS) Division of Fluid Dynamics (DFD), Nov. 18 -- 20, 2012, in San Diego, Calif.

The work extends findings by Dr. Yoël Forterre and researchers from Harvard University who discovered several years ago that the curvature of the Venus fly-trap's leaf changes while closing due to a snap-buckling instability in the leaf structure related to the shell-like geometry of the leaves. Mathieu Colombani, Ph.D. student in Forterre's laboratory is now conducting experiments to elucidate the physical mechanisms behind this movement. "The extremely high pressure inside the Venus fly trap cells prompted us to suspect that changes with a cell's pressure regime could be a key component driving this rapid leaf movement," he notes.

The Colombai team uses a microfluidic pressure probe to target and measure individual cells. This is a tricky experiment because it requires the living plant to be immobilized with dental silicone paste while the probe is inserted using a micromanipulator guided by binoculars. They take pressure measurements before and after leaf closure. They also measure cell wall elasticity by injecting or removing a known amount of liquid and recording the cellular responses, as well as take other measurements. "By measuring osmotic pressure and elasticity of leaf cells we hope to come closer to explaining the snapping mechanism,'' Colombani explains.


Story Source:

The above story is based on materials provided by American Physical Society's Division of Fluid Dynamics. Note: Materials may be edited for content and length.


Cite This Page:

American Physical Society's Division of Fluid Dynamics. "Probing the mystery of the venus fly trap's botanical bite." ScienceDaily. ScienceDaily, 16 November 2012. <www.sciencedaily.com/releases/2012/11/121116085204.htm>.
American Physical Society's Division of Fluid Dynamics. (2012, November 16). Probing the mystery of the venus fly trap's botanical bite. ScienceDaily. Retrieved January 28, 2015 from www.sciencedaily.com/releases/2012/11/121116085204.htm
American Physical Society's Division of Fluid Dynamics. "Probing the mystery of the venus fly trap's botanical bite." ScienceDaily. www.sciencedaily.com/releases/2012/11/121116085204.htm (accessed January 28, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Wednesday, January 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Aquaponics Turn Suburban Industrial Park Into Farmland: Hume

Aquaponics Turn Suburban Industrial Park Into Farmland: Hume

The Toronto Star (Jan. 27, 2015) — Ancient techniques of growing greens with fish and water are well ahead of Toronto bylaws. Video provided by The Toronto Star
Powered by NewsLook.com
Chihuahua Sleeps on Top of Great Dane

Chihuahua Sleeps on Top of Great Dane

Rumble (Jan. 27, 2015) — As this giant Great Dane lays down for bedtime he accompanied by an adorable companion. Watch a tiny Chihuahua jump up and prepare to sleep on top of his friend. Now that&apos;s a pretty big bed! Credit to &apos;emma_hussey01&apos;. Video provided by Rumble
Powered by NewsLook.com
Madagascar Locust Plague Could Mean Famine For Millions

Madagascar Locust Plague Could Mean Famine For Millions

Newsy (Jan. 27, 2015) — The Food and Agriculture Organization says millions could face famine in Madagascar without more funding to finish locust eradication efforts. Video provided by Newsy
Powered by NewsLook.com
Shark Bite Victim Making Amazing Recovery

Shark Bite Victim Making Amazing Recovery

AP (Jan. 27, 2015) — A Texas woman who lost more than five pounds of flesh to a shark in the Bahamas earlier this month could be released from a Florida hospital soon. Experts believe she was bitten by a bull shark while snorkeling. (Jan. 27) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins