Featured Research

from universities, journals, and other organizations

Plant organ development breakthrough

Date:
December 3, 2012
Source:
Carnegie Institution
Summary:
Plants grow upward from a tip of undifferentiated tissue called the shoot apical meristem -- some cells eventually differentiating into leaves and flowers. Because each plant's form and shape is determined by organ formation and organ boundary creation, elucidating the underlying mechanisms that govern these functions could help scientists design the architecture of crop plants to better capture light and ultimately produce more crop yield with less input.

Arabidopsis.
Credit: Courtesy of the US Department of Agriculture

Plants grow upward from a tip of undifferentiated tissue called the shoot apical meristem. As the tip extends, stem cells at the center of the meristem divide and increase in numbers. But the cells on the periphery differentiate to form plant organs, such as leaves and flowers. In between these two layers, a group of boundary cells go into a quiescent state and form a barrier that not only separates stem cells from differentiating cells, but eventually forms the borders that separate the plant's organs.

Because each plant's form and shape is determined by organ formation and organ boundary creation, elucidating the underlying mechanisms that govern these functions could help scientists design the architecture of crop plants to better capture light and ultimately produce more crop yield with less input. New research from two teams led by Carnegie's Zhiyong Wang and Kathryn Barton focuses on the role of the crucial plant hormone brassinosteroid in the creation of plant-shoot architecture.

Their work is published by Proceedings of the National Academy of Sciences during the week of December 3.

Like all organisms, plant growth and development is regulated by internally produced chemical signals, including hormones like brassinosteroid, which is found throughout the plant kingdom. The brassinosteroid signaling pathway is involved in regulating more than 1,000 plant genes. Mutant plants that are deficient in brassinosteroid that are grown in the dark show features of plants grown in the light. They also have defects at many phases of the plant life cycle, including reduced seed germination, dwarfism, and sterility.

The new study lead by Wang and Barton uncovered yet another role of brassinosteroid: the formation of boundaries between organs. Plants made hypersensitive to brassinosteroid displayed fused organs. The team included lead author's Carnegie's Joshua Gendron and Jiang-Shu Liu, as well as Min Fan, Mingyi Bai, and Stephan Wenkel, from Carnegie, and Patricia Springer from the University of California Riverside. Their investigations showed that activation of the brassinosteroid pathway represses a group of genes called the cup-shaped cotyledon, or CUC family, which is responsible for organ boundary formation. Using sophisticated techniques the team demonstrated that the protein in the brassinosteroid pathway that is responsible for binding to DNA and, in this case, for inhibiting CUC genes, is present at high levels in the meristem's undifferentiated stem cells and developing organ primordia, but very low in the boundary cells, suggesting that different levels of brassinosteroid activity contribute to the opposite growth behavior of these three types of cells.

"This work links the plant steroids to growth and development, organ boundary development, providing a link between the physiology of the plant and its architectural design," Wang and Barton said.


Story Source:

The above story is based on materials provided by Carnegie Institution. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. M. Gendron, J.-S. Liu, M. Fan, M.-Y. Bai, S. Wenkel, P. S. Springer, M. K. Barton, Z.-Y. Wang. Brassinosteroids regulate organ boundary formation in the shoot apical meristem of Arabidopsis. Proceedings of the National Academy of Sciences, 2012; DOI: 10.1073/pnas.1210799110

Cite This Page:

Carnegie Institution. "Plant organ development breakthrough." ScienceDaily. ScienceDaily, 3 December 2012. <www.sciencedaily.com/releases/2012/12/121203163530.htm>.
Carnegie Institution. (2012, December 3). Plant organ development breakthrough. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2012/12/121203163530.htm
Carnegie Institution. "Plant organ development breakthrough." ScienceDaily. www.sciencedaily.com/releases/2012/12/121203163530.htm (accessed September 17, 2014).

Share This



More Plants & Animals News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Some Tobacco Farmers Thrive Amid Challenges

Some Tobacco Farmers Thrive Amid Challenges

AP (Sep. 16, 2014) The South's tobacco country is surviving, and even thriving in some cases, as demand overseas keeps growers in the fields of one of America's oldest cash crops. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Scientists Given Rare Glimpse of 350-Kilo Colossal Squid

Scientists Given Rare Glimpse of 350-Kilo Colossal Squid

AFP (Sep. 16, 2014) Scientists say a female colossal squid weighing an estimated 350 kilograms (770 lbs) and thought to be only the second intact specimen ever found was carrying eggs when discovered in the Antarctic. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Raw: Scientists Examine Colossal Squid

Raw: Scientists Examine Colossal Squid

AP (Sep. 16, 2014) Squid experts in New Zealand thawed and examined an unusual catch on Tuesday: a colossal squid. It was captured in Antarctica's remote Ross Sea in December last year and has been frozen for eight months. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

AFP (Sep. 16, 2014) Since the arrival of Ebola in Ivory Coast, Ivorians have been abandoning their pets, particularly monkeys, in the fear that they may transmit the virus. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins