Featured Research

from universities, journals, and other organizations

New components of epigenetic 'code' for honey bee development discovered

Date:
December 11, 2012
Source:
University of Sheffield
Summary:
Researchers have uncovered a new element of the honeybee's genetic makeup, which may help to explain why bees are so sensitive to environmental changes.

Bees. Researchers from the UK and Australia have uncovered a new element of the honeybee's genetic makeup, which may help to explain why bees are so sensitive to environmental changes.
Credit: darios44 / Fotolia

Researchers from the UK and Australia have uncovered a new element of the honeybee's genetic makeup, which may help to explain why bees are so sensitive to environmental changes.

Related Articles


Scientists from the University of Sheffield, Queen Mary, University of London and the Australian National University, have found that honeybees have a 'histone code' -- a series of marks on the histone proteins around which their DNA is wrapped in order to fit into the nucleus of a cell. This code is known to exist in humans and other complex organisms in order to control changes in cell development -- but this is the first time it's been discovered in the honeybee.

Histone codes can also be affected by nutrition and environmental factors, so the scientists believe the finding may be another part of the puzzle to explain how eating royal jelly ensures honeybee larvae turn into queens and not workers. "The development of different bees from the same DNA in the larvae is one of the clearest examples of epigenetics in action -- mechanisms that go beyond the basic DNA sequence," explains Dr Mark Dickman from the University of Sheffield's Faculty of Engineering. "From our knowledge of how the histone code works in other organisms, we think that the marks on the histone proteins might act as one of the switches that control how the larvae develop."

The scientists believe their findings will open the door to further study of the interplay between environment, nutrition and how the honey bee develops. The first step will be to identify exactly how larval diet influences the histone code to ensure development into either a queen or a sterile worker.

But the potential impact is much wider, as Dr Paul Hurd, from Queen Mary's School of Biological and Chemical Sciences, explains; "Indirect dietary-mediated effects are also of particular relevance to insect pollinators. Prime examples are from systemic pesticides used on agricultural crops, which accumulate inside nectar and pollen and therefore enter honey bee diet, in some cases with detrimental effect. By studying the impact of diet and particular chemicals on the histone code during honey bee development and behaviour, we may be able to identify how certain pesticides contribute to the decline of some colonies."

Professor Maleszka of the Australian National University adds; "We really need to begin looking beyond classical genetics to understand many of the current problems honey bees face including Colony Collapse Disorder.

There are rarely single genes that cause a given disease; it's more often interactions between a number of genes that's heavily influenced by environmental factors. Histone codes are flexible and have the capacity to act as an interface between genome and environment."

The work is published in the latest issue of Insect Biochemistry and Molecular Biology and was supported in the UK by the Royal Society and the Engineering and Physical Sciences Research Council and by the Australian Research Council and National Health and Medical Research Council.


Story Source:

The above story is based on materials provided by University of Sheffield. Note: Materials may be edited for content and length.


Journal Reference:

  1. Mark J. Dickman, Robert Kucharski, Ryszard Maleszka, Paul J. Hurd. Extensive histone post-translational modification in honey bees. Insect Biochemistry and Molecular Biology, 2012; DOI: 10.1016/j.ibmb.2012.11.003

Cite This Page:

University of Sheffield. "New components of epigenetic 'code' for honey bee development discovered." ScienceDaily. ScienceDaily, 11 December 2012. <www.sciencedaily.com/releases/2012/12/121211101942.htm>.
University of Sheffield. (2012, December 11). New components of epigenetic 'code' for honey bee development discovered. ScienceDaily. Retrieved December 23, 2014 from www.sciencedaily.com/releases/2012/12/121211101942.htm
University of Sheffield. "New components of epigenetic 'code' for honey bee development discovered." ScienceDaily. www.sciencedaily.com/releases/2012/12/121211101942.htm (accessed December 23, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Tuesday, December 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Christmas Kissing Good for Health

Christmas Kissing Good for Health

Reuters - Innovations Video Online (Dec. 22, 2014) Scientists in Amsterdam say couples transfer tens of millions of microbes when they kiss, encouraging healthy exposure to bacteria. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
New Fish Species Discovered, Setting Record for World's Deepest

New Fish Species Discovered, Setting Record for World's Deepest

Buzz60 (Dec. 22, 2014) A new species of fish is discovered living five miles beneath the ocean surface, making it the deepest living fish on earth. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins