Featured Research

from universities, journals, and other organizations

Breast cancer cells growing in 3-D matrix revert to normal

Date:
December 17, 2012
Source:
American Society for Cell Biology
Summary:
Cancer cells in lab cultures have not "forgotten" how to be healthy since they can be guided back into their "normal" growth program by giving them the right cues. Applying compressive force to malignant breast epithelial cells growing within a laminin-rich 3-D extracellular matrix caused them to turn into highly organized, growth-arrested acini, the milk-secreting spherical structures that are central to breast tissue.

Human breast cancer cells growing in the lab on a three-dimensional (3-D) extracellular matrix reverted to a normal phenotype when subjected to compression force applied by an elastic chamber, researchers reported on Dec. 17 at the American Society for Cell Biology Annual Meeting in San Francisco.

Gautham Venugopalan, PhD, of the University of California, Berkeley, bioengineering lab of Daniel Fletcher, PhD, described how applying compressive force to malignant breast epithelial cells growing within a laminin-rich 3-D extracellular matrix caused them to turn into highly organized, growth-arrested acini, the milk-secreting spherical structures that are central to breast tissue.

This "phenotypic reversion" was accomplished without pharmacological agents, noted Dr. Venugopalan. Research collaborators included Kandice Tanner, PhD, and Mina Bissell, PhD, of the Lawrence Berkeley National Laboratory in Berkeley.

During a woman's reproductive life, breast tissue continuously grows, shrinks, and remodels in a highly regulated fashion. When this process breaks down, growth becomes abnormal.

Although genetic mutations are the classic explanation for differences between healthy and malignant cells but they don't tell the whole story because malignant cells treated with certain drugs will grow into organized acini that appear very similar to the healthy acini, even though they remain genetically malignant. This indicates that malignant cells have not completely "forgotten" how to be healthy, since they can be guided back into their "normal" growth program by giving them the right cues, according to Dr. Venugopalan.

Could mechanical force also reprogram malignant cells? The researchers seeded malignant breast epithelial cells into a 3-D laminin-rich extracellular matrix and used an elastic chamber to apply a compressive force. Over time, the compressed malignant cells grew into more organized, healthy-looking acini that resembled normal structures, even without the addition of exogenous drugs.

However, when the researchers added a drug that blocked E-cadherin, a transmembrane protein that helps cells adhere to their neighbors, the compression lost all effect, and the cells returned to their disorganized malignant appearance.

Previous studies have shown that healthy breast cells rotate as they form acini to help them organize into spherical structures, according to Dr. Venugopalan. This coherence is lost in malignant cells, so the researchers investigated whether rotation was affected by compression. By performing time-lapse microscopy over several days, they found that compression was inducing rotation in the malignant cells, further suggesting the importance of cell-cell communication during growth.

"Our findings suggest that external forces can encourage malignant cells to re-enter the correct morphogenetic program," said Dr. Venugopalan.


Story Source:

The above story is based on materials provided by American Society for Cell Biology. Note: Materials may be edited for content and length.


Cite This Page:

American Society for Cell Biology. "Breast cancer cells growing in 3-D matrix revert to normal." ScienceDaily. ScienceDaily, 17 December 2012. <www.sciencedaily.com/releases/2012/12/121217140537.htm>.
American Society for Cell Biology. (2012, December 17). Breast cancer cells growing in 3-D matrix revert to normal. ScienceDaily. Retrieved September 1, 2014 from www.sciencedaily.com/releases/2012/12/121217140537.htm
American Society for Cell Biology. "Breast cancer cells growing in 3-D matrix revert to normal." ScienceDaily. www.sciencedaily.com/releases/2012/12/121217140537.htm (accessed September 1, 2014).

Share This




More Health & Medicine News

Monday, September 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Get on Your Bike! London Cycling Popularity Soars Despite Danger

Get on Your Bike! London Cycling Popularity Soars Despite Danger

AFP (Sep. 1, 2014) Wedged between buses, lorries and cars, cycling in London isn't for the faint hearted. Nevertheless the number of people choosing to bike in the British capital has doubled over the past 15 years. Duration: 02:27 Video provided by AFP
Powered by NewsLook.com
Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com
We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Liberia Continues Fight Against Ebola

Liberia Continues Fight Against Ebola

AFP (Aug. 30, 2014) Authorities in Liberia try to stem the spread of the Ebola epidemic by raising awareness and setting up sanitation units for people to wash their hands. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

More Coverage


To Revert Breast Cancer Cells, Give Them the Squeeze

Dec. 17, 2012 Researchers have found that compression can guide malignant breast cells back to a normal growth pattern. The findings demonstrate the influence of mechanical forces on a cell's ... read more
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins