Featured Research

from universities, journals, and other organizations

Mathematical breakthrough sets out rules for more effective teleportation

Date:
January 16, 2013
Source:
University of Cambridge
Summary:
Theoretical physicists have shown that quantum law of 'entanglement' may hold the key to eventual teleportation of quantum information. Now, for the first time, researchers have worked out how entanglement could be 'recycled' to increase the efficiency of these connections. The result could conceivably take us a step closer to sci-fi style teleportation in the future, although this research is purely theoretical in nature.

A new protocol advances solutions for more efficient teleportation -- the transport of quantum information at the speed of light.
Credit: vlights / Fotolia

For the last ten years, theoretical physicists have shown that the intense connections generated between particles as established in the quantum law of 'entanglement' may hold the key to eventual teleportation of quantum information.

Related Articles


Now, for the first time, researchers have worked out how entanglement could be 'recycled' to increase the efficiency of these connections. Published in the journal Physical Review Letters, the result could conceivably take us a step closer to sci-fi style teleportation in the future, although this research is purely theoretical in nature.

The team have also devised a generalised form of teleportation, which allows for a wide variety of potential applications in quantum physics.

Once considered impossible, in 1993 a team of scientists calculated that teleportation could work in principle using quantum laws. Quantum teleportation harnesses the 'entanglement' law to transmit particle-sized bites of information across potentially vast distances in an instant.

Entanglement involves a pair of quantum particles such as electrons or protons that are intrinsically bound together, retaining synchronisation between the two that holds whether the particles are next to each other or on opposing sides of a galaxy. Through this connection, quantum bits of information -- qubits -- can be relayed using only traditional forms of classical communication.

Previous teleportation protocols, have fallen into one of two camps, those that could only send scrambled information requiring correction by the receiver, or more recently, "port-based" teleportation that doesn't require a correction, but needed an impractical amount of entanglement -- each object sent would destroy the entangled state.

Now, physicists from Cambridge, University College London, and the University of Gdansk have developed a protocol to provide an optimal solution in which the entangled state is 'recycled', so that the gateway between particles holds for the teleportation of multiple objects.

They have even devised a protocol in which multiple qubits can be teleported simultaneously, although the entangled state degrades proportionally to the amount of qubits sent in both cases.

"The first protocol consists of sequentially teleporting states, and the second teleports them in a bulk," said Sergii Strelchuck from Cambridge's Department of Applied Mathematics and Theoretical Physics, who led the research with colleagues Jonathan Oppenheim of Cambridge and UCL and Michal Horodecki of the University of Gdansk.

"We have also found a generalised teleportation technique which we hope will find applications in areas such as quantum computation."

Einstein famously loathed the theory of quantum entanglement, dismissing it as "spooky action at a distance." But entanglement has since been proven to be a very real feature of our universe, and one that has extraordinary potential to advance all manner of scientific endeavor.

"There is a close connection between teleportation and quantum computers, which are devices which exploit quantum mechanics to perform computations which would not be feasible on a classical computer," said Strelchuck.

"Building a quantum computer is one of the great challenges of modern physics, and it is hoped that the new teleportation protocol will lead to advances in this area."

While the Cambridge physicists' protocol is completely theoretical, last year a team of Chinese scientists reported teleporting photons over 143km, breaking previous records, and quantum entanglement is increasingly seen as an important area of scientific investment. Teleportation of information carried by single atoms is feasible with current technologies, but the teleportation of large objects -- such as Captain Kirk -- remains in the realm of science fiction.

Adds Strelchuck: "Entanglement can be thought of as the fuel, which powers teleportation. Our protocol is more fuel efficient, able to use entanglement thriftily while eliminating the need for error correction."


Story Source:

The above story is based on materials provided by University of Cambridge. The original article is licensed under a Creative Commons License. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sergii Strelchuk, Michał Horodecki, Jonathan Oppenheim. Generalized Teleportation and Entanglement Recycling. Physical Review Letters, 2013; 110 (1) DOI: 10.1103/PhysRevLett.110.010505

Cite This Page:

University of Cambridge. "Mathematical breakthrough sets out rules for more effective teleportation." ScienceDaily. ScienceDaily, 16 January 2013. <www.sciencedaily.com/releases/2013/01/130116111744.htm>.
University of Cambridge. (2013, January 16). Mathematical breakthrough sets out rules for more effective teleportation. ScienceDaily. Retrieved February 26, 2015 from www.sciencedaily.com/releases/2013/01/130116111744.htm
University of Cambridge. "Mathematical breakthrough sets out rules for more effective teleportation." ScienceDaily. www.sciencedaily.com/releases/2013/01/130116111744.htm (accessed February 26, 2015).

Share This


More From ScienceDaily



More Computers & Math News

Thursday, February 26, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Lenovo Hack May Be Retaliation For 'Superfish' Vulnerability

Lenovo Hack May Be Retaliation For 'Superfish' Vulnerability

Newsy (Feb. 26, 2015) Lenovo&apos;s website was hacked by what appears to be the infamous Lizard Squad group. The attack seems to be related to Lenovo&apos;s "Superfish" controversy. Video provided by Newsy
Powered by NewsLook.com
Cyber Criminals Holding Phone and Computer Data to Ransom

Cyber Criminals Holding Phone and Computer Data to Ransom

AFP (Feb. 26, 2015) Computer and smartphone viruses are holding an increasing number of devices hostage using “ransomware.” Duration:02:21 Video provided by AFP
Powered by NewsLook.com
China Shuns Big Tech Names

China Shuns Big Tech Names

Reuters - Business Video Online (Feb. 26, 2015) The Chinese government has taken products from major tech firms off its purchase list in favour of smaller domestic players, but experts warn the plan may backfire making them open to security risks. Eve Johnson reports. Video provided by Reuters
Powered by NewsLook.com
Apple Reveals Potential Date For Apple Watch Reveal

Apple Reveals Potential Date For Apple Watch Reveal

Newsy (Feb. 26, 2015) The company sent out announcements for a March 9 media event with a simple message, "Spring forward." Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins