Featured Research

from universities, journals, and other organizations

Pathway that stimulates bone growth uncovered

Date:
February 13, 2013
Source:
University of Pennsylvania
Summary:
Researchers have discovered that a protein called Jagged-1 stimulates human stem cells to differentiate into bone-producing cells. This protein could help both human and animal patients heal from bone fractures faster and may form the basis of treatments for a rare metabolic condition called Alagille syndrome.

Researchers from the University of Pennsylvania School of Veterinary Medicine have discovered that a protein called Jagged-1 stimulates human stem cells to differentiate into bone-producing cells. This protein could help both human and animal patients heal from bone fractures faster and may form the basis of treatments for a rare metabolic condition called Alagille syndrome.

The study, published in the journal Stem Cells, was authored by three members of Penn Vet's departments of Clinical Studies-New Bolton Center and Animal Biology: postdoctoral researchers Fengchang Zhu and Mariya T. Sweetwyne and associate professor Kurt Hankenson, who also holds the Dean W. Richardson Chair in Equine Disease Research.

Last November, on the promise of these and other findings, Hankenson and his former doctoral student Mike Dishowitz launched a company, Skelegen, through Penn's Center for Technology Transfer UPstart program. Skelegen's focus is to continue to develop and improve a system for delivering Jagged-1 to sites that require new bone growth, in the hope of eventually treating bone fractures and other skeletal problems. Penn, through the CTT, has submitted a provisional patent application to protect the inventions of Hankenson and his colleagues.

Although human bones seem static and permanent, bone tissue actually forms and reforms throughout our lives. Cells called osteoblasts form bone and are derived from precursor cells known as mesenchymal stem cells, which are stored in bone marrow. These stem cells must receive specific signals from the body in order to become osteoblasts.

Prior research had identified a molecule called bone morphogenic protein, or BMP, as one of these proteins that drives stem cells to become bone-forming cells. As a result, BMP has been used clinically to help patients healing from broken bones or to perform spinal fusions without relying on patients' own bone tissue.

"But it has become clear that BMPs have some issues with safety and efficacy," Hankenson said. "In the field we're always searching for new ways for progenitor cells to become osteoblasts so we became interested in the Notch signaling pathway."

This molecular signaling pathway is found in most animal species and is known to play a role in stem cell differentiation. The researchers chose to investigate one of the proteins that acts in this pathway by binding to the Notch receptor, Jagged-1. The Penn Vet team has previously shown that Jagged-1 is highly expressed in bone-forming cells during fracture healing and that introducing Jagged-1 to mouse stem cells blocked the progression of stem cells to osteoblasts.

"That had been our operating dogma for a year or two," Hankenson said.

Next the researchers decided to see what happened when Jagged-1 was introduced to human stem cells. There they came upon a very different result.

"It was remarkable to find that just putting the cells onto the Jagged-1 ligand seemed sufficient for driving the formation of bone-producing cells," he said.

This finding aligns with other evidence linking Jagged-1 to bone formation. Patients with a rare disease known as Alagille syndrome frequently have mutations in the gene that codes for Jagged-1. Individuals with this condition have problems with their metabolism that severely affect their livers but also tend to have challenges with their skeletal system and break bones easily.

Furthermore, genome-wide association studies, which search large populations for mutations that may be linked with particular characteristics, have found a connection between mutations near the Jagged-1 gene and low bone mass.

Hankenson has multiple collaborations with other researchers at Penn to further investigate how manipulating the Jagged-1 protein may one day help patients. He is working with Kathleen Loomes of Penn's Perelman School of Medicine and the Children's Hospital of Pennsylvania to study pediatric patients with Alagille syndrome to find out whether their bone abnormalities are indeed connected to Jagged-1 malfunctions.

And in addition to partnering with Dishowitz to develop the technology to deliver Jagged-1 to bone repair sites, Hankenson is also collaborating with Jason Burdick in Penn's School of Engineering and Applied Science and Jaimo Ahn and Samir Mehta of Penn Medicine to improve and implement this system.

The U.S. Department of Defense provided support for the research.


Story Source:

The above story is based on materials provided by University of Pennsylvania. Note: Materials may be edited for content and length.


Journal Reference:

  1. Fengchang Zhu, Mariya T. Sweetwyne, Kurt D. Hankenson. Pkcδ Is Required for Jagged-1 Induction of hMSC Osteogenic Differentiation. STEM CELLS, 2013; DOI: 10.1002/stem.1353

Cite This Page:

University of Pennsylvania. "Pathway that stimulates bone growth uncovered." ScienceDaily. ScienceDaily, 13 February 2013. <www.sciencedaily.com/releases/2013/02/130213105013.htm>.
University of Pennsylvania. (2013, February 13). Pathway that stimulates bone growth uncovered. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2013/02/130213105013.htm
University of Pennsylvania. "Pathway that stimulates bone growth uncovered." ScienceDaily. www.sciencedaily.com/releases/2013/02/130213105013.htm (accessed October 21, 2014).

Share This



More Health & Medicine News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

CDC Revamps Ebola Guidelines After Criticism

CDC Revamps Ebola Guidelines After Criticism

Newsy (Oct. 21, 2014) The Centers for Disease Control and Prevention have issued new protocols for healthcare workers interacting with Ebola patients. Video provided by Newsy
Powered by NewsLook.com
First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

Newsy (Oct. 21, 2014) A medical team has for the first time given a man the ability to walk again after transplanting cells from his brain onto his severed spinal cord. Video provided by Newsy
Powered by NewsLook.com
CDC Issues New Ebola Guidelines for Health Workers

CDC Issues New Ebola Guidelines for Health Workers

Reuters - US Online Video (Oct. 21, 2014) The U.S. Centers for Disease Control and Prevention has set up new guidelines for health workers taking care of patients infected with Ebola. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
'Cadaver Dog' Sniffs out Human Remains

'Cadaver Dog' Sniffs out Human Remains

AP (Oct. 21, 2014) Where's a body buried? Buster's nose can often tell you. He's a cadaver dog, specially trained to find human remains and increasingly being used by law enforcement and accepted in courts. These dogs are helping solve even decades-old mysteries. (Oct. 21) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins