Featured Research

from universities, journals, and other organizations

Metal ions regulate terpenoid metabolism in insects

Date:
February 28, 2013
Source:
Max Planck Institute for Chemical Ecology
Summary:
Scientists have discovered an unusual regulation of enzymes that catalyze chain elongation in the terpenoid pathway. In the horseradish leaf beetle, a single enzyme can trigger the production of two completely different substances depending on whether it is regulated by cobalt, manganese or magnesium ions: Defensive iridoids or juvenile hormones.

Larvae of horseradish leaf beetle Phaedon cochleariae.
Credit: MPI for Chemical Ecology/Frick

Max Planck scientists in Jena, Germany, have discovered an unusual regulation of enzymes that catalyze chain elongation in an important secondary metabolism, the terpenoid pathway. In the horseradish leaf beetle Phaedon cochleariae a single enzyme can trigger the production of two completely different substances depending on whether it is regulated by cobalt, manganese or magnesium ions: iridoids, which are defensive substances the larvae use to repel predators, or juvenile hormones, which control insect's development. Insects unlike plants do not have a large arsenal of the proteins called isoprenyl diphosphate synthases. Therefore they may have developed another efficient option to channel metabolites into the different directions of terpenoid metabolism by using metal ions for control.

Natural products: 40,000 terpenes

Apart from the primary metabolism which produces substances that ensure the survival of the cells, there are additional biosynthetic pathways in all organisms. Their products may be less important for a single cell, but they can nevertheless be essential for the whole organism. These pathways are summarized as secondary metabolism. One of them is the terpenoid pathway: with more than 40,000 different known structures it generates one of the largest classes of natural products. Terpenoid molecules have diverse functions and can act as components in molecular signaling pathways, as toxins, fragrances or hormones.

The basic unit of all terpenes is a simple molecule containing five carbon atoms that can be joined to chains of different length. There are monoterpenes (C10 units, 2 x C5), sesquiterpenes (C15, 3 x C5), and even polymers, such as natural rubber, which comprises several hundred C5 units. Special enzymes mediate chain elongation. These enzymes have attracted the curiosity of scientists at the Max Planck Institute for Chemical Ecology, Jena, and the Leibniz Institute for Plant Biochemistry in Halle. They studied mechanistic alternatives of how chain elongation is regulated.

Metal ions instead of specialized enzymes

Enzymes involved in chain elongation belong to the group of isoprenyl diphosphate synthases. Such an enzyme was isolated from larvae of the horseradish leaf beetle Phaedon cochleariae. It raised the interest of Antje Burse, project group leader in the Department of Bioorganic Chemistry at the Max Planck Institute for Chemical Ecology.

Experiments with larvae in which the enzyme encoding gene was silenced showed that the protein was involved in the formation of the C10 monoterpene chrysomelidial that larvae produce to defend themselves against predators. The larvae accumulate this monoterpene in special glands and release it as a defensive secretion when they are attacked by their enemies, such as ants.

However, surprising results emerged after comprehensive biochemical characterization of the enzyme. "After we had conducted an in vitro analysis of the protein, including measurements of product formation in the presence of different metal ions as co-factors, we were surprised to discover that only geranyl diphosphate (C10), a precursor for the defensive substance chrysomelidial, was produced after addition of cobalt and manganese ions. On the other hand, adding magnesium ions resulted in the formation of farnesyl diphosphate (C15), a potential precursor for juvenile hormones, which is 5 carbon atoms longer," says the scientist. All three metals were found in larval tissue, leading to the assumption that enzyme catalysis is directed by the different metal co-factors in the larvae, whichever is predominant in amount: Towards toxin or hormone − physiologically a major difference.

Sequence comparisons cannot replace a thorough biochemical analysis

How the different metal ions modify the product range of the enzyme is still unclear. It is very likely that the varying atomic radii of the metal ions involved in the catalysis effect changes in the spatial structure of the enzyme, which prevent or allow the admission of a third C5 unit and hence result in the production of C10 or C15 molecules.

"Our experiments provide two important findings," says Wilhelm Boland, director at the Max Planck Institute. "First, the directing influence of metal ions on the product formation of isoprenyl diphosphate synthases is a novel "control element" in the regulation of the terpene metabolism which should be included in future experimental settings. And secondly: The diversity of terpenoid molecules cannot be attributed solely to the broad substrate specificity of some enzymes in the last steps of the metabolic pathway, but is in fact already inherent in early biosynthetic steps." Nature continues to provide interesting answers to the question how organisms manage to produce tens of thousands of different secondary metabolites.


Story Source:

The above story is based on materials provided by Max Planck Institute for Chemical Ecology. Note: Materials may be edited for content and length.


Journal Reference:

  1. S. Frick, R. Nagel, A. Schmidt, R. R. Bodemann, P. Rahfeld, G. Pauls, W. Brandt, J. Gershenzon, W. Boland, A. Burse. Metal ions control product specificity of isoprenyl diphosphate synthases in the insect terpenoid pathway. Proceedings of the National Academy of Sciences, 2013; DOI: 10.1073/pnas.1221489110

Cite This Page:

Max Planck Institute for Chemical Ecology. "Metal ions regulate terpenoid metabolism in insects." ScienceDaily. ScienceDaily, 28 February 2013. <www.sciencedaily.com/releases/2013/02/130228103440.htm>.
Max Planck Institute for Chemical Ecology. (2013, February 28). Metal ions regulate terpenoid metabolism in insects. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2013/02/130228103440.htm
Max Planck Institute for Chemical Ecology. "Metal ions regulate terpenoid metabolism in insects." ScienceDaily. www.sciencedaily.com/releases/2013/02/130228103440.htm (accessed April 18, 2014).

Share This



More Plants & Animals News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Vermont Goat Meat Gives Refugees Taste of Home

Vermont Goat Meat Gives Refugees Taste of Home

AP (Apr. 18, 2014) Dairy farmers and ethnic groups in Vermont are both benefiting from a unique collaborative effort that's feeding a growing need for fresh and affordable goat meat. (April 18) Video provided by AP
Powered by NewsLook.com
First Ever 'Female Penis' Discovered In Animal Kingdom

First Ever 'Female Penis' Discovered In Animal Kingdom

Newsy (Apr. 18, 2014) Not only are these newly discovered bugs' sex organs reversed, but they also mate for up to 70 hours. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com
The Great British Farmland Boom

The Great British Farmland Boom

Reuters - Business Video Online (Apr. 17, 2014) Britain's troubled Co-operative Group is preparing to cash in on nearly 18,000 acres of farmland in one of the biggest UK land sales in decades. As Ivor Bennett reports, the market timing couldn't be better, with farmland prices soaring over 270 percent in the last 10 years. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins