Featured Research

from universities, journals, and other organizations

Suicidal bacteria: Unicellular organisms occasionally poison themselves with a toxin

Date:
March 15, 2013
Source:
Albert-Ludwigs-Universität Freiburg
Summary:
The cyanobacterium Synechocystis produces toxins that often lead to its own demise. Biologists have now determined the logic governing this mechanism..

A typical liquid culture of the cyanobacterium Synechocystis.
Credit: Stefan Kopfmann

The cyanobacterium Synechocystis produces toxins that often lead to its own demise. The biologists Stefan Kopfmann and Prof. Dr. Wolfgang Hess from the University of Freiburg have determined the logic governing this mechanism.

Their findings have been published in the Journal of Biological Chemistry (JBC) and PLoS ONE.

The cyanobacterium Synechocystis produces several toxins. However, most of the time they cannot become active because the unicellular organism usually only produces them together with an antitoxin that neutralizes their poisonous effect. This is a trick of nature: The genes for the toxin and the antitoxin are located together on a plasmid, i.e. a fragment of DNA that exists independently of the actual bacterial chromosome. In contrast to the toxin, the antitoxin is not very stable. When a cell loses the plasmid during cell division, both of the genes are lost. Since the toxin is more stable than the antitoxin and is thus effective for a longer period of time, these cells eventually die off. Hence, the toxin-antitoxin pairs constitute a natural selection mechanism that sees to it that only cells which retain the plasmid survive.

The plasmid pSYSA of the cyanobacterium Synechocystis has not one but seven different systems of this kind and is thus well protected. The reason for this is because in addition to the genes for the seven toxin-antitoxin pairs, the plasmid pSYSA possesses the genetic information for a bacterial immune system. If the plasmid with this system gets lost in cell division, several toxins thus see to it that the bacterium is killed. The fact that the genes responsible for it are combined with a high amount of toxin-antitoxin pairs indicates that this system has special significance for the cyanobacterial cell.

The project is supported by funding from the German Research Foundation.


Story Source:

The above story is based on materials provided by Albert-Ludwigs-Universität Freiburg. Note: Materials may be edited for content and length.


Journal References:

  1. S. Kopfmann, W. R. Hess. Toxin-Antitoxin Systems on the Large Defense Plasmid pSYSA of Synechocystis sp. PCC 6803. Journal of Biological Chemistry, 2013; 288 (10): 7399 DOI: 10.1074/jbc.M112.434100
  2. Ingeborg Scholz, Sita J. Lange, Stephanie Hein, Wolfgang R. Hess, Rolf Backofen. CRISPR-Cas Systems in the Cyanobacterium Synechocystis sp. PCC6803 Exhibit Distinct Processing Pathways Involving at Least Two Cas6 and a Cmr2 Protein. PLoS ONE, 2013; 8 (2): e56470 DOI: 10.1371/journal.pone.0056470

Cite This Page:

Albert-Ludwigs-Universität Freiburg. "Suicidal bacteria: Unicellular organisms occasionally poison themselves with a toxin." ScienceDaily. ScienceDaily, 15 March 2013. <www.sciencedaily.com/releases/2013/03/130315074607.htm>.
Albert-Ludwigs-Universität Freiburg. (2013, March 15). Suicidal bacteria: Unicellular organisms occasionally poison themselves with a toxin. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2013/03/130315074607.htm
Albert-Ludwigs-Universität Freiburg. "Suicidal bacteria: Unicellular organisms occasionally poison themselves with a toxin." ScienceDaily. www.sciencedaily.com/releases/2013/03/130315074607.htm (accessed July 28, 2014).

Share This




More Plants & Animals News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) — A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) — A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com
What's To Blame For Worst Ebola Outbreak In History?

What's To Blame For Worst Ebola Outbreak In History?

Newsy (July 27, 2014) — A U.S. doctor has tested positive for the deadly Ebola virus, as the worst-ever outbreak continues to grow. Video provided by Newsy
Powered by NewsLook.com
The New York Times Backs Pot Legalization

The New York Times Backs Pot Legalization

Newsy (July 27, 2014) — The New York Times has officially endorsed the legalization of marijuana, but why now, and to what end? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins