Featured Research

from universities, journals, and other organizations

Map of 'shortcuts' between all human genes

Date:
March 18, 2013
Source:
Rockefeller University
Summary:
Researchers have generated the full set of distances, routes and degrees of separation between any two human genes, creating a map of gene "shortcuts" that aims to simplify the hunt for disease-causing genes in monogenic diseases.

Researchers have generated the full set of distances, routes and degrees of separation between any two human genes, creating a map of gene “shortcuts” that aims to simplify the hunt for disease-causing genes in monogenic diseases.
Credit: Yuval Itan, et al., The Rockefeller University

Some diseases are caused by single gene mutations. Current techniques for identifying the disease-causing gene in a patient produce hundreds of potential gene candidates, making it difficult for scientists to pinpoint the single causative gene. Now, a team of researchers led by Rockefeller University scientists have created a map of gene "shortcuts" to simplify the hunt for disease-causing genes.

The investigation, spearheaded by Yuval Itan, a postdoctoral fellow in the St. Giles Laboratory of Human Genetics of Infectious Diseases, has led to the creation of what he calls the human gene connectome, the full set of distances, routes (the genes on the way), and degrees of separation, between any two human genes. Itan, a computational biologist, says the computer program he developed to generate the connectome uses the same principles that GPS navigation devices use to plan a trip between two locations. The research is reported in the online early edition of the journal Proceedings of the National Academy of Sciences.

"High throughput genome sequencing technologies generate a plethora of data, which can take months to search through," says Itan. "We believe the human gene connectome will provide a shortcut in the search for disease-causing mutations in monogenic diseases."

Itan and his colleagues, including researchers from the Necker Hospital for Sick Children, the Pasteur Institute in Paris, and Ben-Gurion University in Israel, designed applications for the use of the human gene connectome. They began with a gene called TLR3, which is important for resistance to herpes simplex encephalitis, a life-threatening infection from the herpes virus that can cause significant brain damage in genetically susceptible children. Researchers in the St. Giles lab, headed by Jean-Laurent Casanova, previously showed that children with HSE have mutations in TLR3 or in genes that are closely functionally related to TLR3. In other words, these genes are located at a short biological distance from TLR3. As a result, novel herpes simplex encephalitis-causing genes are also expected to have a short biological distance from TLR3.

To test how well the human gene connectome could predict a disease-causing gene, the researchers sequenced exomes -- all DNA of the genome that is coding for proteins -- of two patients recently shown to carry mutations of a separate gene, TBK1.

"Each patient's exome contained hundreds of genes with potentially morbid mutations," says Itan. "The challenge was to detect the single disease-causing gene." After sorting the genes by their predicted biological proximity to TLR3, Itan and his colleagues found TBK1 at the top of the list of genes in both patients. The researchers also used the TLR3 connectome -- the set of all human genes sorted by their predicted distance from TLR3 -- to successfully predict two other genes, EFGR and SRC, as part of the TLR3 pathway before they were experimentally validated, and applied other gene connectomes to detect Ehlers-Danlos syndrome and sensorineural hearing loss disease causing genes.

"The human gene connectome is, to the best of our knowledge, the only currently available prediction of the specific route and distance between any two human genes of interest, making it ideal to solve the needle in the haystack problem of detecting the single disease causing gene in a large set of potentially fatal genes," says Itan. "This can now be performed by prioritizing any number of genes by their biological distance from genes that are already known to cause the disease.

"Approaches based on the human gene connectome have the potential to significantly increase the discovery of disease-causing genes for diseases that are genetically understood in some patients as well as for those that are not well studied. The human gene connectome should also progress the general field of human genetics by predicting the nature of unknown genetic mechanisms."


Story Source:

The above story is based on materials provided by Rockefeller University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Yuval Itan, Shen-Ying Zhang, Guillaume Vogt, Avinash Abhyankar, Melina Herman, Patrick Nitschke, Dror Fried, Lluis Quintana-Murci, Laurent Abel, and Jean-Laurent Casanova. The human gene connectome as a map of short cuts for morbid allele discovery. PNAS, March 18, 2013 DOI: 10.1073/pnas.1218167110

Cite This Page:

Rockefeller University. "Map of 'shortcuts' between all human genes." ScienceDaily. ScienceDaily, 18 March 2013. <www.sciencedaily.com/releases/2013/03/130318151639.htm>.
Rockefeller University. (2013, March 18). Map of 'shortcuts' between all human genes. ScienceDaily. Retrieved August 29, 2014 from www.sciencedaily.com/releases/2013/03/130318151639.htm
Rockefeller University. "Map of 'shortcuts' between all human genes." ScienceDaily. www.sciencedaily.com/releases/2013/03/130318151639.htm (accessed August 29, 2014).

Share This




More Health & Medicine News

Friday, August 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com
Who Could Be Burnt by WHO's E-Cigs Move?

Who Could Be Burnt by WHO's E-Cigs Move?

Reuters - Business Video Online (Aug. 28, 2014) The World Health Organisation has called for the regulation of electronic cigarettes as both tobacco and medical products. Ciara Lee looks at the impact of the move on the tobacco industry. Video provided by Reuters
Powered by NewsLook.com
CDC Director On Ebola Outbreak: 'It's Worse Than I Feared'

CDC Director On Ebola Outbreak: 'It's Worse Than I Feared'

Newsy (Aug. 28, 2014) CDC director Tom Frieden says the Ebola outbreak is even worse than he feared. But he also said there's still hope to contain it. Video provided by Newsy
Powered by NewsLook.com
How A 'Rule Of Thumb' Could Slow Down Drinking

How A 'Rule Of Thumb' Could Slow Down Drinking

Newsy (Aug. 28, 2014) A study suggests people who follow a "rule of thumb" when pouring wine dispense less than those who don't have a particular amount in mind. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins