Featured Research

from universities, journals, and other organizations

Ants rise with temperature

Date:
March 21, 2013
Source:
SUNY Buffalo State
Summary:
Aphaenogaster genera are abundant woodland ants that disperse most spring flower seeds. This research shows how rising minimum temperatures affect cold- and warm-adapted ants. Warming minimum temperatures allow warm-adapted ants to migrate up the mountains, replacing cold-adapted ants.

Warm nights might be more important than hot days in determining how species respond to climate change. "Rising minimum temperatures may be the best way to predict how climate change will affect an ecosystem," said Robert Warren, assistant professor of biology at SUNY Buffalo State. "Cold extremes that once limited warm-adapted species will disappear in a warming global climate."

Related Articles


Global Change Biology published a study conducted by Warren with Ph.D. candidate Lacy Chick of the University of Tennessee-Knoxville. The study shows that the lowest- -- not the highest--temperatures are critical in determining the migration of warmth-loving ants, Aphaenogaster rudis, to higher elevations.

As they migrate, A. rudis--a reddish ant with light-colored legs -- displace Aphaenogaster picea, a dark ant with dark legs. A. picea thrive at temperatures about 2ēC colder than A. rudis can tolerate. Aphaenogaster ants are the dominant woodland seed dispersers in eastern forests. "So it's possible that the displacement of A. picea may affect the spread of seeds produced by early spring ephemerals," said Warren.

By comparing data collected in 1974 to current data, Warren and his team were able to compare the percentage of A. rudis and A. picea at different elevations in the Southern Appalachian Mountains in Georgia. In 1974, A. rudis accounted for less than 60 percent of the two species at 500 meters and less than 20 percent at 700 meters. At 900 meters (nearly 3,000 feet), A. rudis were almost nonexistent.

From 1974 to 2012, regional mean and maximum temperatures remained steady, but the minimum temperature increased by about two degrees Celsius (3.6 degrees Fahrenheit). In 2012, A. rudis approached 90 percent at 500 meters, nearly 60 percent at 700 meters, and more than 20 percent at 900 meters.

"As climate change occurs, we expect species to migrate," said Warren. "However, we need evidence to establish that climate change caused that movement."

To obtain that evidence, Warren's team collected a total of 755 ants from 191 colonies. In the lab, researchers subjected the ants to thermal tolerance tests. Loss of righting response was used to indicate intolerance to low and high temperatures.

"Both species tolerated high maximum temperatures," said Warren, "but A. rudis can tolerate a higher minimum temperature than A. picea." (The cold-tolerant A. picea are viable as long as minimum temperature is at least -0.5ē C; A. rudis requires a minimum temperature of 2.0ē C.)

As the minimum temperature rises, the warm-tolerant A. rudis can migrate to higher elevations, displacing A. picea. "This suggests that rising temperatures may not necessarily kill or stress species directly," said Warren. "Instead, it might be that higher minimum temperatures allow warm-adapted species to outcompete cold-adapted species."

Because A. picea break dormancy at cooler temperatures than A. rudis, they become active earlier in the spring when certain forest ephemerals such as Erythronium americanum (trout lilies) bloom. The absence of A. picea may affect the spread of seeds produced by early-flowering woodland plants.

Warren said, "What seems like a small difference--just two degrees--is having a big impact."


Story Source:

The above story is based on materials provided by SUNY Buffalo State. Note: Materials may be edited for content and length.


Journal Reference:

  1. Robert J. Warren, Lacy Chick. Upward ant distribution shift corresponds with minimum, not maximum, temperature tolerance. Global Change Biology, 2013; DOI: 10.1111/gcb.12169

Cite This Page:

SUNY Buffalo State. "Ants rise with temperature." ScienceDaily. ScienceDaily, 21 March 2013. <www.sciencedaily.com/releases/2013/03/130321081505.htm>.
SUNY Buffalo State. (2013, March 21). Ants rise with temperature. ScienceDaily. Retrieved October 26, 2014 from www.sciencedaily.com/releases/2013/03/130321081505.htm
SUNY Buffalo State. "Ants rise with temperature." ScienceDaily. www.sciencedaily.com/releases/2013/03/130321081505.htm (accessed October 26, 2014).

Share This



More Earth & Climate News

Sunday, October 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

EU Gets Climate Deal, UK PM Gets Knock

EU Gets Climate Deal, UK PM Gets Knock

Reuters - Business Video Online (Oct. 24, 2014) — EU leaders achieve a show of unity by striking a compromise deal on carbon emissions. But David Cameron's bid to push back EU budget contributions gets a slap in the face as the European Commission demands an extra 2bn euros. David Pollard reports. Video provided by Reuters
Powered by NewsLook.com
Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) — Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Raw: Tornado Rips Roofs in Washington State

Raw: Tornado Rips Roofs in Washington State

AP (Oct. 24, 2014) — A rare tornado ripped roofs off buildings, uprooted trees and shattered windows Thursday afternoon in the southwest Washington city of Longview, but there were no reports of injuries. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Fast-Moving Lava Headed For Town On Hawaii's Big Island

Fast-Moving Lava Headed For Town On Hawaii's Big Island

Newsy (Oct. 24, 2014) — Lava from the Kilauea volcano on Hawaii's Big Island has accelerated as it travels toward a town called Pahoa. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins