Featured Research

from universities, journals, and other organizations

Soils in newly forested areas store substantial carbon that could help offset climate change

Date:
April 1, 2013
Source:
University of Michigan
Summary:
Surface appearances can be so misleading: In most forests, the amount of carbon held in soils is substantially greater than the amount contained in the trees themselves, according to new research.

Forest plantations established on formerly non-forested land, like this experimental poplar stand in Michigan's Upper Peninsula, accumulate soil carbon that helps to offset carbon emissions and climate change.
Credit: Ray Miller

Surface appearances can be so misleading: In most forests, the amount of carbon held in soils is substantially greater than the amount contained in the trees themselves.

Related Articles


If you're a land manager trying to assess the potential of forests to offset carbon emissions and climate change by soaking up atmospheric carbon and storing it, what's going on beneath the surface is critical.

But while scientists can precisely measure and predict the amount of above-ground carbon accumulating in a forest, the details of soil-carbon accounting have been a bit fuzzy.

Two University of Michigan researchers and their colleagues helped to plug that knowledge gap by analyzing changes in soil carbon that occurred when trees became established on different types of nonforested soils across the United States.

In a paper published online April 1 in the Soil Science Society of America Journal, they looked at lands previously used for surface mining and other industrial processes, former agricultural lands and native grasslands where forests have encroached.

U-M ecologist Luke Nave and his colleagues found that, in general, growing trees on formerly nonforested land increases soil carbon. Previous studies have been equivocal about the effects of so-called afforestation on soil carbon levels.

"Collectively, these results demonstrate that planting trees or allowing them to establish naturally on nonforested lands has a significant, positive effect on the amount of carbon held in soils," said Nave, an assistant research scientist at the U-M Biological Station and in the Department of Ecology and Evolutionary Biology.

"These forest soils represent a significant carbon reservoir that is helping to offset carbon emissions that lead to climate change," said Nave, lead author of the paper.

Large and rapid increases in soil carbon were observed on forested land that had previously been used for surface mining and related industrial processes. On a post-mining landscape, the amount of soil carbon generally doubled within 20 years of mining termination and continued to double every decade or so after that.

The changes after cultivated farm fields were abandoned and trees became established are much subtler, though still significant. This type of tree establishment -- which has been widespread in recent decades in the northeastern United States and portions of the Midwest -- takes about 40 years to cause a detectable increase in soil carbon.

But at the end of a century's time, the amount of soil carbon averages 15 percent higher than when the land was under cultivation, with the biggest increases (up to 32 percent) in the upper two inches of the soil.

In places where trees and shrubs have encroached into native grassland, soil carbon increased 31 percent after several decades, according to the study. That type of incursion is occurring throughout the Great Plains, from the Dakotas all the way to northern Texas, and is largely due to suppression of wildfires.

"Our work helps those tasked with understanding and managing the carbon balance of U.S. lands by putting a number on the changes in soil carbon that occur during this sort of land-use transition," Nave said.

Most of the organic carbon in forest soils comes from the growth and death of roots and their associated fungi, he said.

The study involved a reexamination of 46 research papers published between 1957 and 2010, as well as an analysis of 409 soil profiles from the National Soil Carbon Network database.

Co-authors of the Soil Science Society of America Journal article are Chris Swanston of the U.S. Forest Service, Umakant Mishra of the Argonne National Laboratory and Knute Nadelhoffer, director of the U-M Biological Station and a professor in the Department of Ecology and Evolutionary Biology.

The work was supported by the U.S. Forest Service and the National Institute of Food and Agriculture.


Story Source:

The above story is based on materials provided by University of Michigan. Note: Materials may be edited for content and length.


Journal Reference:

  1. L. E. Nave, C. W. Swanston, U. Mishra, K. J. Nadelhoffer. Afforestation Effects on Soil Carbon Storage in the United States: A Synthesis. Soil Science Society of America Journal, 2013; DOI: 10.2136/sssaj2012.0236

Cite This Page:

University of Michigan. "Soils in newly forested areas store substantial carbon that could help offset climate change." ScienceDaily. ScienceDaily, 1 April 2013. <www.sciencedaily.com/releases/2013/04/130401110744.htm>.
University of Michigan. (2013, April 1). Soils in newly forested areas store substantial carbon that could help offset climate change. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2013/04/130401110744.htm
University of Michigan. "Soils in newly forested areas store substantial carbon that could help offset climate change." ScienceDaily. www.sciencedaily.com/releases/2013/04/130401110744.htm (accessed October 24, 2014).

Share This



More Plants & Animals News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Black Bear Cub Goes Sunday Shopping

Black Bear Cub Goes Sunday Shopping

Reuters - Light News Video Online (Oct. 23, 2014) Price check on honey? Bear cub startles Oregon drugstore shoppers. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Dances With Wolves in China's Wild West

Dances With Wolves in China's Wild West

AFP (Oct. 23, 2014) One man is on a mission to boost the population of wolves in China's violence-wracked far west. The animal - symbol of the Uighur minority there - is under threat with a massive human resettlement program in the region. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
Breakfast Debate: To Eat Or Not To Eat?

Breakfast Debate: To Eat Or Not To Eat?

Newsy (Oct. 23, 2014) Conflicting studies published in the same week re-ignited the debate over whether we should be eating breakfast. Video provided by Newsy
Powered by NewsLook.com
Weird-Looking Dinosaur Solves 50-Year-Old Mystery

Weird-Looking Dinosaur Solves 50-Year-Old Mystery

Newsy (Oct. 23, 2014) You've probably seen some weird-looking dinosaurs, but have you ever seen one this weird? It's worth a look. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins