Featured Research

from universities, journals, and other organizations

Scientists use nature against nature to develop an antibiotic with reduced resistance

Date:
April 10, 2013
Source:
Rockefeller University
Summary:
A new broad range antibiotic has been found to kill a wide range of bacteria, including drug-resistant Staphylococcus (MRSA) bacteria that do not respond to traditional drugs, in mice. The antibiotic, Epimerox, targets weaknesses in bacteria that have long been exploited by viruses that attack them, known as phage, and promises to avoid the problem of resistance that plagues other antibiotics.

A new broad range antibiotic, developed jointly by scientists at The Rockefeller University and Astex Pharmaceuticals, has been found to kill a wide range of bacteria, including drug-resistant Staphylococcus (MRSA) bacteria that do not respond to traditional drugs. The antibiotic, Epimerox, targets weaknesses in bacteria that have long been exploited by viruses that attack them, known as phage, and has even been shown to protect animals from fatal infection by Bacillus anthracis, the bacteria that causes anthrax.

Related Articles


Target selection is critical for the development of new antimicrobial agents. To date, most approaches for target selection have focused on the importance of bacterial survival. However, in addition to survival, the Rockefeller scientists believe that molecular targets should be identified by determining which cellular pathways have a low probability for developing resistance.

"For a billion years, phages repeatedly have infected populations of bacteria, and during this period of time they have identified weaknesses in the bacterial armor," says senior author Vincent A. Fischetti, professor and head of the Laboratory of Bacterial Pathogenesis and Immunology. "We're taking advantage of what phage have 'learned' during this period for us to identify new antibiotic targets that we believe will escape the problem of resistance found for other antibiotics."

The path to identification of this new target spanned more than seven years of effort. Fischetti and his colleagues used a phage-encoded molecule to identify a bacterial target enzyme called 2-epimerase, which is used by Bacillus anthracis to synthesize an essential cell wall structure. In 2008, Fischetti's lab, with Rockefeller's Erec Stebbins and his colleagues in the Laboratory of Structural Microbiology, solved the crystal structure of this enzyme. Based on this work, the researchers identified a previously unknown regulatory mechanism in 2-epimerase that involves direct interaction between one substrate molecule in the enzyme's active site and another in the enzyme's allosteric site. Fischetti and his colleagues chose to target the allosteric site of 2-epimerase to develop inhibitory compounds, because it is found in other bacterial 2-epimerases but not in the human equivalent of the enzyme.

Through the collaboration with Astex, initiated by co-author Allan Goldberg, an inhibitor of 2-epimerase named Epimerox was developed. Raymond Schuch, a former postdoctoral researcher in Fischetti's lab, tested the inhibitor in mice infected with Bacillus anthracis. He found that not only did Epimerox protect the animals from anthrax, but the bacteria did not develop resistance to the inhibitor. The researchers also found that Epimerox was able to kill methicillin-resistant Staphylococcus aureus (or MRSA) with no evidence of resistance even after extensive testing. Their work was published this week in PLOS ONE.

"Since nearly all Gram-positive bacteria contain 2-epimerase, we believe that Epimerox should be an effective broad-range antibiotic agent," says Fischetti. "The long-term evolutionary interaction between phage and bacteria has allowed us to identify targets that bacteria cannot easily change or circumvent. That finding gives us confidence that the probability for developing resistance to Epimerox is rather low, thereby enabling treatment of infections caused by multi-drug-resistant bacteria such as MRSA. It is a very encouraging result at a time when antibiotic resistance is a major health concern."


Story Source:

The above story is based on materials provided by Rockefeller University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Raymond Schuch, Adam J. Pelzek, Assaf Raz, Chad W. Euler, Patricia A. Ryan, Benjamin Y. Winer, Andrew Farnsworth, Shyam S. Bhaskaran, C. Erec Stebbins, Yong Xu, Adrienne Clifford, David J. Bearss, Hariprasad Vankayalapati, Allan R. Goldberg, Vincent A. Fischetti. Use of a Bacteriophage Lysin to Identify a Novel Target for Antimicrobial Development. PLoS ONE, 2013; 8 (4): e60754 DOI: 10.1371/journal.pone.0060754

Cite This Page:

Rockefeller University. "Scientists use nature against nature to develop an antibiotic with reduced resistance." ScienceDaily. ScienceDaily, 10 April 2013. <www.sciencedaily.com/releases/2013/04/130410201828.htm>.
Rockefeller University. (2013, April 10). Scientists use nature against nature to develop an antibiotic with reduced resistance. ScienceDaily. Retrieved March 2, 2015 from www.sciencedaily.com/releases/2013/04/130410201828.htm
Rockefeller University. "Scientists use nature against nature to develop an antibiotic with reduced resistance." ScienceDaily. www.sciencedaily.com/releases/2013/04/130410201828.htm (accessed March 2, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Monday, March 2, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

500 Snakes Surprise Construction Workers In Canada

500 Snakes Surprise Construction Workers In Canada

Newsy (Mar. 2, 2015) Hundreds of snakes, disturbed by a construction project, were relocated to a wildlife rescue association in Canada. Video provided by Newsy
Powered by NewsLook.com
Zookeepers Copy Animal Poses In Hilarious Viral Photos

Zookeepers Copy Animal Poses In Hilarious Viral Photos

Buzz60 (Mar. 2, 2015) Zookeepers at the Symbio Wildlife Park in Helensburgh, Australia decided to take some of their favorite animal photos and recreate them by posing just like the animals. Jen Markham (@jenmarkham) has the story. Video provided by Buzz60
Powered by NewsLook.com
Heavy Toll as Australian Farmers Struggle Through Drought

Heavy Toll as Australian Farmers Struggle Through Drought

AFP (Mar. 2, 2015) Mounting debts, despair and forced repossessions are taking a heavy toll on farmers in parts of Australia suffering from its worst drought in 100 years. Duration: 02:16 Video provided by AFP
Powered by NewsLook.com
Whale-Watching Scientists Spot Baby Orca

Whale-Watching Scientists Spot Baby Orca

AP (Feb. 28, 2015) Researchers following endangered killer whales spotted a baby orca off the coast of Washington state, the third birth documented this winter but still leaving the population dangerously low. (Feb. 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins