Featured Research

from universities, journals, and other organizations

Context crucial when it comes to mutations in genetic evolution

Date:
June 13, 2013
Source:
University of Nebraska-Lincoln
Summary:
Evolutionary biologists have found that whether a given mutation is good or bad is often determined by other mutations associated with it. In other words, genetic evolution is context-dependent.

Jay Storz performing field work in the Colorado Rockies.
Credit: Image courtesy of University of Nebraska-Lincoln

With mutations, it turns out that context can be everything in determining whether or not they are beneficial to their evolutionary fate.

Related Articles


According to the traditional view among biologists, a central tenet of evolutionary biology has been that the evolutionary fates of new mutations depend on whether their effects are good, bad or inconsequential with respect to reproductive success. Central to this view is that "good" mutations are always good and lead to reproductive success, while "bad" mutations are always bad and will be quickly weeded out of the gene pool. However, new research led by evolutionary biologist Jay Storz of the University of Nebraska-Lincoln has found that whether a given mutation is good or bad is often determined by other mutations associated with it. In other words, genetic evolution is context-dependent.

In a study to be published in the June 14 issue of Science, Storz and colleagues at UNL and Aarhus University in Denmark report that an individual mutation can be beneficial if it occurs in combination with certain other mutations, but the same mutation can detrimental to the organism if it occurs in other combinations.

The researchers studied mutations that alter the function of hemoglobin, the protein in charge of transporting oxygen in the blood. Physiologists have long known that many high-altitude animals have evolved hemoglobins with high affinities for oxygen, which can enhance oxygen uptake in thin air. Earlier research by Storz's group on populations of North American deer mice that are native to high and low altitudes had found that the high-altitude mice had evolved hemoglobins with an increased oxygen-binding affinity -- and that this difference is attributable to the combined effects of genetic mutations at 12 different sites in the hemoglobin protein.

For the discovery reported in Science, the researchers used a technique called "protein engineering" to synthesize hemoglobin proteins that contained each of the naturally occurring mutations in all possible multi-site combinations.

"By measuring the oxygen-binding properties of these engineered hemoglobins, we discovered that the same individual mutations produced an increased oxygen-affinity in some combinations and they produced a decreased oxygen-affinity in other combinations. Their effects are completely context-dependent," said Storz, an associate professor of biological sciences.

"One of the important implications is that if there are interactions between mutations, then some mutational pathways of evolution may be more accessible than others. The evolutionary fate of a new mutation will depend critically on which other mutations have already occurred. The order in which mutations occur can determine whether evolution is more likely to follow some pathways rather than others. Evolution may follow certain pathways just because certain interactions may be negative, other interactions may be positive. These kinds of interaction effects determine what mutational pathways are open and available for evolution."

Storz's collaborators on the Science paper include Hideaki Moriyama, an associate professor of biological sciences at UNL, and two other researchers in Storz's lab, postdoctoral researcher Chandrasekhar Natarajan and graduate student Noriko Inoguchi; and Roy E. Weber and Angela Fago of Aarhus.

The research was funded by grants from the National Institutes of Health-National Heart, Lung and Blood Institute and the National Science Foundation in the United States, and the Science Faculty, Aarhus University, in Denmark.

It's the fifth time in five years that Storz's research has been published one of the major international interdisciplinary journals. Science is published by the American Association for the Advancement of Science.


Story Source:

The above story is based on materials provided by University of Nebraska-Lincoln. The original article was written by Tom Simons. Note: Materials may be edited for content and length.


Journal Reference:

  1. C. Natarajan, N. Inoguchi, R. E. Weber, A. Fago, H. Moriyama, J. F. Storz. Epistasis Among Adaptive Mutations in Deer Mouse Hemoglobin. Science, 2013; 340 (6138): 1324 DOI: 10.1126/science.1236862

Cite This Page:

University of Nebraska-Lincoln. "Context crucial when it comes to mutations in genetic evolution." ScienceDaily. ScienceDaily, 13 June 2013. <www.sciencedaily.com/releases/2013/06/130613142829.htm>.
University of Nebraska-Lincoln. (2013, June 13). Context crucial when it comes to mutations in genetic evolution. ScienceDaily. Retrieved November 1, 2014 from www.sciencedaily.com/releases/2013/06/130613142829.htm
University of Nebraska-Lincoln. "Context crucial when it comes to mutations in genetic evolution." ScienceDaily. www.sciencedaily.com/releases/2013/06/130613142829.htm (accessed November 1, 2014).

Share This



More Plants & Animals News

Saturday, November 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Watch Baby Goose Survive A 400-Foot Cliff Dive

Watch Baby Goose Survive A 400-Foot Cliff Dive

Buzz60 (Oct. 31, 2014) For its nature series Life Story, the BBC profiled the barnacle goose, whose chicks must make a daredevil 400-foot cliff dive from their nests to find food. Jen Markham has the astonishing video. Video provided by Buzz60
Powered by NewsLook.com
World's Salamanders At Risk From Flesh-Eating Fungus

World's Salamanders At Risk From Flesh-Eating Fungus

Newsy (Oct. 31, 2014) The import of salamanders around the globe is thought to be contributing to the spread of a deadly fungus. Video provided by Newsy
Powered by NewsLook.com
Alcoholic Drinks In The E.U. Could Get Calorie Labels

Alcoholic Drinks In The E.U. Could Get Calorie Labels

Newsy (Oct. 31, 2014) A health group in the United Kingdom has called for mandatory calorie labels on alcoholic beverages in the European Union. Video provided by Newsy
Powered by NewsLook.com
Malaria Threat in Liberia as Fight Against Ebola Rages

Malaria Threat in Liberia as Fight Against Ebola Rages

AFP (Oct. 31, 2014) Focus on treating the Ebola epidemic in Liberia means that treatment for malaria, itself a killer, is hard to come by. MSF are now undertaking the mass distribution of antimalarials in Monrovia. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins