Science News
from research organizations

Genetic factors shaping salamander tails determine regeneration pace

Date:
July 4, 2013
Source:
Public Library of Science
Summary:
Researchers have found that salamanders' capacity to regrow a cut tail depends on several small regions of DNA in their genome that impact how wide the tail grows.
Share:
       
FULL STORY

This is a representative tail tip that was sampled during the process of regeneration.
Credit: Voss GJ, Kump DK, Walker JA, Voss SR (2013) Variation in Salamander Tail Regeneration Is Associated with Genetic Factors That Determine Tail Morphology. PLOS ONE 8(7): e67274. doi:10.1371/journal.pone.0067274

Salamanders' capacity to regrow lost limbs may seem infinite when compared with that of humans, but even amongst salamanders, some species regenerate body parts very slowly, while others lose this capacity as they age. Now, researchers have found that salamanders' capacity to regrow a cut tail depends on several small regions of DNA in their genome that impact how wide the tail grows.

The results are published July 3 in the open access journal PLOS ONE by Randal Voss and colleagues from the University of Kentucky.

In the study, approximately 66-68% of the differences in regeneration among animals correlated with the width of their tails at the site of amputation. Molecular analysis revealed several genetic markers that had small, additive effects on the width of the tail, and thus contributed to the animals' regenerative capacity.

Voss adds, "Our results show that regenerative outgrowth is regulated locally by factors at the site of injury. Although we do not know the nature of these local factors yet, our findings suggest they are distributed quantitatively along the length of the tail."


Story Source:

The above story is based on materials provided by Public Library of Science. Note: Materials may be edited for content and length.


Journal Reference:

  1. Gareth J. Voss, D. Kevin Kump, John A. Walker, S. Randal Voss. Variation in Salamander Tail Regeneration Is Associated with Genetic Factors That Determine Tail Morphology. PLoS ONE, 2013; 8 (7): e67274 DOI: 10.1371/journal.pone.0067274

Cite This Page:

Public Library of Science. "Genetic factors shaping salamander tails determine regeneration pace." ScienceDaily. ScienceDaily, 4 July 2013. <www.sciencedaily.com/releases/2013/07/130704095053.htm>.
Public Library of Science. (2013, July 4). Genetic factors shaping salamander tails determine regeneration pace. ScienceDaily. Retrieved May 28, 2015 from www.sciencedaily.com/releases/2013/07/130704095053.htm
Public Library of Science. "Genetic factors shaping salamander tails determine regeneration pace." ScienceDaily. www.sciencedaily.com/releases/2013/07/130704095053.htm (accessed May 28, 2015).

Share This Page: