Featured Research

from universities, journals, and other organizations

Protein surfaces defects act as drug targets

Date:
July 30, 2013
Source:
Springer
Summary:
New research shows a physical characterization of the interface of the body's proteins with water. Identifying the locations where it is easiest to remove water from the interface of target proteins could constitute a novel drug design strategy. The candidate drugs would need to be engineered to bind at the site of the protein where interfacial water is most easily dislodged.

Drug designers now have a new way of designing drug candidates suitable for dislodging unstable water molecules.

Related Articles


New research shows a physical characterisation of the interface of the body's proteins with water. Identifying the locations where it is easiest to remove water from the interface of target proteins could constitute a novel drug design strategy. The candidate drugs would need to be engineered to bind at the site of the protein where interfacial water is most easily dislodged. These findings, based on the work of María Belén Sierra from the National University of the South, in Bahia Blanca, Argentina and colleagues, were recently published in The European Physical Journal E. The challenge is to describe the protein-water interface without a nanoscale model for water.

Previous research tended to regard water as a continuum medium even at interfaces. However, these are inadequate for nanometric scale events occurring on the protein surfaces. Instead, the authors prefer a discrete model describing water molecules' partial confinement on the proteins' surface.Belén Sierra and colleagues pursued a novel strategy for correlating interfacial water mobility with so-called packing defects in the protein structure.

Proteins typically fold in ways that will keep part of their interface with water dry, in order to carry out their biological function. However, some of the paper's authors have previously discovered that the protein's water seal typically has some defects, called dehydrons. These are like crevices on the protein surface permitting access to water molecules.

The water molecules become heated up because they cannot interact with their neighbours as fully as they do in bulk water.

These interfacial water molecules are thus unstable and easily expelled. The authors' findings thus pinpoint the exact location of these unstable water molecules. This, in turn, could be useful in selecting future drug candidates that would dislodge these water molecules upon association with the protein on the defect sites.


Story Source:

The above story is based on materials provided by Springer. Note: Materials may be edited for content and length.


Journal Reference:

  1. María Belén Sierra, Sebastián R. Accordino, J. Ariel Rodriguez-Fris, Marcela A. Morini, Gustavo A. Appignanesi, Ariel Fernández Stigliano. Protein packing defects “heat up” interfacial water. The European Physical Journal E, 2013; 36 (6) DOI: 10.1140/epje/i2013-13062-7

Cite This Page:

Springer. "Protein surfaces defects act as drug targets." ScienceDaily. ScienceDaily, 30 July 2013. <www.sciencedaily.com/releases/2013/07/130730123415.htm>.
Springer. (2013, July 30). Protein surfaces defects act as drug targets. ScienceDaily. Retrieved March 5, 2015 from www.sciencedaily.com/releases/2013/07/130730123415.htm
Springer. "Protein surfaces defects act as drug targets." ScienceDaily. www.sciencedaily.com/releases/2013/07/130730123415.htm (accessed March 5, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, March 5, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Did the Simpsons Figure out the Higgs Boson Particle Years Before Scientists

Did the Simpsons Figure out the Higgs Boson Particle Years Before Scientists

Buzz60 (Mar. 4, 2015) — During a 1998 Simpsons episode, Homer Simpson scribbled a seemingly gibberish equation on a chalkboard. Turns out that equation is a shake off from predicting the actual nano mass of the God Particle. Patrick Jones (@Patrick_E_Jones) explains. Video provided by Buzz60
Powered by NewsLook.com
Wearables Now the Must-Haveables

Wearables Now the Must-Haveables

Reuters - Business Video Online (Mar. 3, 2015) — Telecom company executives are meeting in Barcelona for the Mobile World Congress, the largest annual trade show for the wireless industry. As Ivor Bennett reports from the show wearable technology is one of the big themes. Video provided by Reuters
Powered by NewsLook.com
Forensic Holodeck Creates 3D Crime Scenes

Forensic Holodeck Creates 3D Crime Scenes

Reuters - Innovations Video Online (Mar. 3, 2015) — A holodeck is no longer the preserve of TV sci-fi classic Star Trek, thanks to researchers from the Institute of Forensic Medicine Zurich, who have created what they say is the first system in the world to visualise the 3D data of forensic scans. Jim Drury saw it in operation. Video provided by Reuters
Powered by NewsLook.com
Solar Plane Passes New Test Ahead of World Tour

Solar Plane Passes New Test Ahead of World Tour

AFP (Mar. 2, 2015) — A solar-powered plane made a third successful test flight in the United Arab Emirates on Monday ahead of a planned round-the-world tour to promote alternative energy. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins