Science News

... from universities, journals, and other research organizations

Protein Surfaces Defects Act as Drug Targets

July 30, 2013 — Drug designers now have a new way of designing drug candidates suitable for dislodging unstable water molecules.


Share This:

New research shows a physical characterisation of the interface of the body's proteins with water. Identifying the locations where it is easiest to remove water from the interface of target proteins could constitute a novel drug design strategy. The candidate drugs would need to be engineered to bind at the site of the protein where interfacial water is most easily dislodged. These findings, based on the work of María Belén Sierra from the National University of the South, in Bahia Blanca, Argentina and colleagues, were recently published in The European Physical Journal E. The challenge is to describe the protein-water interface without a nanoscale model for water.

Previous research tended to regard water as a continuum medium even at interfaces. However, these are inadequate for nanometric scale events occurring on the protein surfaces. Instead, the authors prefer a discrete model describing water molecules' partial confinement on the proteins' surface.Belén Sierra and colleagues pursued a novel strategy for correlating interfacial water mobility with so-called packing defects in the protein structure.

Proteins typically fold in ways that will keep part of their interface with water dry, in order to carry out their biological function. However, some of the paper's authors have previously discovered that the protein's water seal typically has some defects, called dehydrons. These are like crevices on the protein surface permitting access to water molecules.

The water molecules become heated up because they cannot interact with their neighbours as fully as they do in bulk water.

These interfacial water molecules are thus unstable and easily expelled. The authors' findings thus pinpoint the exact location of these unstable water molecules. This, in turn, could be useful in selecting future drug candidates that would dislodge these water molecules upon association with the protein on the defect sites.

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:

|

Story Source:

The above story is based on materials provided by Springer.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Journal Reference:

  1. María Belén Sierra, Sebastián R. Accordino, J. Ariel Rodriguez-Fris, Marcela A. Morini, Gustavo A. Appignanesi, Ariel Fernández Stigliano. Protein packing defects “heat up” interfacial water. The European Physical Journal E, 2013; 36 (6) DOI: 10.1140/epje/i2013-13062-7
APA

MLA

Note: If no author is given, the source is cited instead.

Search ScienceDaily

Number of stories in archives: 140,675

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily's archives for related news topics,
the latest news stories, reference articles, science videos, images, and books.

Recommend ScienceDaily on Facebook, Twitter, and Google:

Other social bookmarking and sharing services:

|

 
Interested in ad-free access? If you'd like to read ScienceDaily without ads, let us know!
  more breaking science news

Social Networks


Follow ScienceDaily on Facebook, Twitter,
and Google:

Recommend ScienceDaily on Facebook, Twitter, and Google +1:

Other social bookmarking and sharing tools:

|

Breaking News

... from NewsDaily.com

  • more science news

In Other News ...

  • more top news

Science Video News


Detecting Alzheimer's Early

Building upon a recent discovery that the same Alzheimer's disease process that goes on in the brain also occurs in the eye, researchers have. ...  > full story

Strange Science News

 

Free Subscriptions

... from ScienceDaily

Get the latest science news with our free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Feedback

... we want to hear from you!

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?