Featured Research

from universities, journals, and other organizations

Strangers invade the homes of giant bacteria

Date:
August 7, 2013
Source:
University of Southern Denmark
Summary:
Life is not a walk in the park for the world's largest bacteria, that live as soft, noodle-like, white strings on the bottom of the ocean depths. Without being able to fend for themselves, they get invaded by parasitic microorganisms that steal the nutrition, that they have painstakingly retrieved. This newly discovered bizarre deep ocean relationship may ultimately impact ocean productivity, report researchers.

This photo shows a sample of giant bacteria Thioploca retrieved from the researchers research cruise in the Pacific.
Credit: Loreto de Brabrandere

Life is not a walk in the park for the world's largest bacteria, that live as soft, noodle-like, white strings on the bottom of the ocean depths. Without being able to fend for themselves, they get invaded by parasitic microorganisms that steal the nutrition, that they have painstakingly retreived. This newly discovered bizarre deep ocean relationship may ultimately impact ocean productivity, report researchers from University of Southern Denmark now in the scientific journal Nature.

Related Articles


At the bottom of the eastern Pacific off Mexico we find one of the largest bacteria in the world: Thioploca. It is so large that it can be seen with the naked eye, and it lives together with other family members in bundles of long fluffy white cell strands that look like Chinese noodles. Thioploca feeds on nitrate, which it absorbs from the water, and when it has gathered a portion of nitrate, it retires to a dwelling site under the seabed. The bacteria withdraws through an up to 20 cm long sheath to its dwelling site, and when it is again ready to feed, it returns through the tube to the ocean water.

"We have long thought that a surprisingly large amount of nitrate disappears here. When we investigated the case, we saw that Thioploca is not solely responsible for all nitrate removal. Inside the tubes we found some smaller cells, so-called anammox bacteria that steal nitrate from Thioploca when it retires through the sheath with its harvest of nitrate," explains Bo Thamdrup, bio-geo-chemist at the Nordic Center for Earth Evolution (NordCEE), University of Southern Denmark.

Along with colleagues from Pomona College in California and other American institutions, he describes the newly discovered symbiosis in the journal Nature.

The discovery is now helping to explain why in some parts of the oceans large quantities of nutrients disappear.

"The newly discovered symbiotic relationship increases nitrogen metabolism in the sea. This leads to fewer algae in the water and thus less food for marine organisms. The consequence is that there is less food for the fish," explains Bo Thamdrup.

It is often an accelleration rather than a reduction of algal growth that worries marine scientists, because algal blooms can lead to poor and potentially deadly conditions for marine animals, including fish, particularly in coastal waters. But in some places in the world -- as in the area, that Bo Thamdrup and his colleagues have studied -- it is not increased but reduced algal growth, which leads to poorer living conditions for the fish.

The research team studied the seabed off Mexico, where a large area of the ocean is extremely low in oxygen. Only bacteria that feed on nitrate instead of oxygen can live here.

"We have previously believed that nitrogen removal occured mainly in the open ocean and in the water column rather than at the bottom. However, if oxygen-depleted regions and Thioploca and anammox-bacteria spread over the seabed near the coasts, it could have implications for fish life and fisheries" explains Bo Thamdrup.


Story Source:

The above story is based on materials provided by University of Southern Denmark. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. G. Prokopenko, M. B. Hirst, L. De Brabandere, D. J. P. Lawrence, W. M. Berelson, J. Granger, B. X. Chang, S. Dawson, E. J. Crane III, L. Chong, B. Thamdrup, A. Townsend-Small, D. M. Sigman. Nitrogen losses in anoxic marine sediments driven by Thioploca–anammox bacterial consortia. Nature, 2013; 500 (7461): 194 DOI: 10.1038/nature12365

Cite This Page:

University of Southern Denmark. "Strangers invade the homes of giant bacteria." ScienceDaily. ScienceDaily, 7 August 2013. <www.sciencedaily.com/releases/2013/08/130807134125.htm>.
University of Southern Denmark. (2013, August 7). Strangers invade the homes of giant bacteria. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2013/08/130807134125.htm
University of Southern Denmark. "Strangers invade the homes of giant bacteria." ScienceDaily. www.sciencedaily.com/releases/2013/08/130807134125.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Christmas Kissing Good for Health

Christmas Kissing Good for Health

Reuters - Innovations Video Online (Dec. 22, 2014) Scientists in Amsterdam say couples transfer tens of millions of microbes when they kiss, encouraging healthy exposure to bacteria. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

More Coverage


Newly Discovered Bacterial Partnership Changes Ocean Chemistry

Aug. 7, 2013 In a discovery that further demonstrates just how unexpected and unusual nature can be, scientists have found two strains of bacteria whose symbiotic relationship is unlike anything seen ... read more

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins