Featured Research

from universities, journals, and other organizations

Newly discovered bacterial partnership changes ocean chemistry

Date:
August 7, 2013
Source:
University of Southern California
Summary:
In a discovery that further demonstrates just how unexpected and unusual nature can be, scientists have found two strains of bacteria whose symbiotic relationship is unlike anything seen before.

In a discovery that further demonstrates just how unexpected and unusual nature can be, scientists have found two strains of bacteria whose symbiotic relationship is unlike anything seen before.

Long, thin, hairlike Thioploca (meaning "sulfur braids" in Spanish) trichomes form chains down into marine sediment, which tiny anammox cells ride down like an elevator. At the bottom, the anammox cells consume the waste products of the Thioploca: nitrite and ammonium, or "fixed" nitrogen.

Nitrogen is a crucial building block of life, a prerequisite for photosynthesis. While nitrogen is present in abundance in Earth atmosphere, to be useful for most of living organisms, the nonreactive atmospheric nitrogen that diffuses into the ocean from the air must be converted into the biologically available "fixed" forms: ammonium, nitrate and nitrite by specialized organisms called nitrogen fixers. Other organisms use up this fixed nitrogen and convert it back to di-nitrogen gas.

Living together in the mud beneath areas of high plant productivity, Thioploca and anammox intensify this part of the nitrogen cycle.

Gliding down through the mud, Thioploca chains bring down nitrate -- a highly desirable resource in harsh environment of oxygen-free sediments. As Thioploca encounters sulfide (which is a roadblock for most other bacteria) formed from the reaction of organic matter from above and sea water sulfate, it helps react nitrate with sulfide, producing nitrite and ammonium, which the anammox consumes and churns out di-nitrogen gas.

The anammox cells ride on Thioploca, living off its waste, and so both microbes thrive where others perish. Overall, however, they lock up an important resource for life in the ocean, making it unusable by the organisms at the base of the foodchain that rely on photosynthesis to survive.

"The symbiotic relationship we discovered is an incredibly elegant chemical tandem between two chemolithotrophs -- organisms which derive their metabolic energy purely from inorganic chemistry. We first predicted the symbiosis based on realization that Thioploca's waste (nitrite and ammonium) are 'bread and butter' for anammox. The prediction was confirmed by our team, proving that the symbiotic pair builds a very efficient natural "waste-treatment plant" -- destroying substantial quantities of fixed nitrogen while linking sulfur and nitrogen cycles in oxygen-free sediments," said Maria Prokopenko, lead author of a paper on the research that will appear in Nature on August 8.

Prokopenko is currently a visiting scholar at Pomona College, but completed the research while she was a research assistant professor at USC, working closely with William Berelson, chair of the Earth Sciences Department at the USC Dornsife College of Letters, Arts and Sciences.

Prokopenko and Berelson collaborated with researchers from the University of California, Davis; the University of Southern Denmark; Pomona College; the University of Connecticut; Princeton, and the University of Cincinnati.

The symbiosis between Thioploca and Anammox is not one creating widespread change throughout the ocean, but rather creates localized zones where fixed nitrogen is depleted faster than most expected.

Most of the samples collected were found off the coast of Baja California.

"As important as nitrogen is to life on this planet, it is amazing that we can discover new pathways and chemical reactions and biological partnerships involving this compound," Berelson said.

Prokopenko, Berelson and others are presently studying nitrogen cycling in waters off Chile and Peru and are also investigating the history of nitrate preserved in ancient rocks.


Story Source:

The above story is based on materials provided by University of Southern California. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. G. Prokopenko, M. B. Hirst, L. De Brabandere, D. J. P. Lawrence, W. M. Berelson, J. Granger, B. X. Chang, S. Dawson, E. J. Crane III, L. Chong, B. Thamdrup, A. Townsend-Small, D. M. Sigman. Nitrogen losses in anoxic marine sediments driven by Thioploca–anammox bacterial consortia. Nature, 2013; 500 (7461): 194 DOI: 10.1038/nature12365

Cite This Page:

University of Southern California. "Newly discovered bacterial partnership changes ocean chemistry." ScienceDaily. ScienceDaily, 7 August 2013. <www.sciencedaily.com/releases/2013/08/130807134015.htm>.
University of Southern California. (2013, August 7). Newly discovered bacterial partnership changes ocean chemistry. ScienceDaily. Retrieved September 20, 2014 from www.sciencedaily.com/releases/2013/08/130807134015.htm
University of Southern California. "Newly discovered bacterial partnership changes ocean chemistry." ScienceDaily. www.sciencedaily.com/releases/2013/08/130807134015.htm (accessed September 20, 2014).

Share This



More Earth & Climate News

Saturday, September 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Wildfires in CA Burn Forest Asunder

Raw: Wildfires in CA Burn Forest Asunder

AP (Sep. 18, 2014) An out-of-control Northern California wildfire has nearly 2,800 people from their homes as it continues to grow, authorities said Thursday. Authorities said a man has been arrested on suspicion of arson for starting the fire on Saturday. (Sept. 18) Video provided by AP
Powered by NewsLook.com
Raw: Elephant Undergoes Surgery in Tbilisi Zoo

Raw: Elephant Undergoes Surgery in Tbilisi Zoo

AP (Sep. 18, 2014) Grand the elephant has successfully undergone surgery to remove a portion of infected tusk at Tbilisi Zoo in Georgia. British veterinary surgeons used an electric drill to extract the infected piece. (Sept. 18) Video provided by AP
Powered by NewsLook.com
Raw: Scientists Examine Colossal Squid

Raw: Scientists Examine Colossal Squid

AP (Sep. 16, 2014) Squid experts in New Zealand thawed and examined an unusual catch on Tuesday: a colossal squid. It was captured in Antarctica's remote Ross Sea in December last year and has been frozen for eight months. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

More Coverage


Strangers Invade the Homes of Giant Bacteria

Aug. 7, 2013 Life is not a walk in the park for the world's largest bacteria, that live as soft, noodle-like, white strings on the bottom of the ocean depths. Without being able to fend for themselves, they ... read more
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins