Featured Research

from universities, journals, and other organizations

Microbial team turns corn stalks and leaves into better biofuel

Date:
August 19, 2013
Source:
University of Michigan
Summary:
A fungus and E. coli bacteria have joined forces to turn tough, waste plant material into isobutanol, a biofuel that matches gasoline's properties better than ethanol.

The biofuel isobutanol, in the vial, was produced by a microbe community feeding on corn stalks and leaves or switchgrass, shown in the flasks behind.
Credit: Joseph Xu

A fungus and E. coli bacteria have joined forces to turn tough, waste plant material into isobutanol, a biofuel that matches gasoline's properties better than ethanol.

University of Michigan research team members said the principle also could be used to produce other valuable chemicals such as plastics.

"We're hoping that biofuels made in such an efficient way can eventually replace current petroleum-based fuels," said Xiaoxia "Nina" Lin, assistant professor of chemical engineering and leader of the research.

Gallon for gallon, isobutanol gives off 82 percent of the heat energy gasoline provides when burned, compared to ethanol's 67 percent. Ethanol also has a tendency to absorb water, corroding pipelines and damaging engines, but isobutanol doesn't mix easily with water. While ethanol serves as a mixer in the gasoline infrastructure today, many researchers argue that isobutanol could be a replacement.

Equally important, this system makes isobutanol from inedible plant materials, so fuel production won't drive up food costs. Lin's team used corn stalks and leaves, but their ecosystem should also be able to process other agricultural byproducts and forestry waste.

While much previous research has focused on trying to create a "superbug" that could tackle the whole job of processing waste plant materials into biofuels, Lin and her colleagues argue that a team of microbial specialists can do better.

The fungus Trichoderma reesei is already very good at breaking down tough plant material into sugars. Escherichia coli, meanwhile, is relatively easy for researchers to genetically modify. James Liao's lab at the University of California-Los Angeles provided E. coli bacteria that had been engineered to convert sugars into isobutanol.

The Lin group put both microbe species into a bioreactor and served up corn stalks and leaves. Colleagues at Michigan State University had pre-treated the roughage to make it easier to digest.

"If you've ever had puffed rice cereal, it's somewhat analogous," said Jeremy Minty, first author of the paper to be published in the Proceedings of the National Academy of Sciences and a recent doctoral graduate in Lin's lab.

The fungi turned the roughage into sugars that fed both microbe species with enough left over to produce isobutanol. The team managed to get 1.88 grams of isobutanol per liter of fluid in the ecosystem, the highest concentration reported to date for turning tough plant materials into biofuels. They also converted a large proportion of the energy locked in the corn stalks and leaves to isobutanol -- 62 percent of the theoretical maximum.

The harmonious coexistence of the fungi and bacteria, with stable populations, was a key success of the experiment.

"A lot of times, one species will dominate the culture and the other will die off," Minty said. "This is a common problem when you're trying to create these systems."

Convincing the microbes to play nicely pays off.

"You can put everything in one pot," Lin said. "The capital investment will be much lower, and also the operating cost will be much lower, so hopefully this will make the whole process much more likely to become economically viable."

Lin's team used game theory to analyze the relationship between the fungi and bacteria. Breaking cellulose down into sugar is hard work, so T. reesei's tendency to do this and then share the spoils mark it as a cooperator. Meanwhile, the E. coli use the sugars without offering the fungus anything in return, which makes it a cheater.

Even so, the bacteria didn't take over the colony because the fungi produce the sugars near their cell membranes, which gives them the first crack at using the sugars. The researchers can control E. coli's advantage by tweaking how quickly the bacteria grow.

Minty and others in Lin's group are now trying to improve on their energy conversion rate and increase the tolerance of the T. reesei and E. coli to isobutanol. The fuel is toxic, but higher concentrations will drive down the cost of isolating the fuel.

"We're really excited about this technology," Minty said. "The U.S. has the potential to sustainably produce 1 billion tons or more of biomass annually, enough to produce biofuels that could displace 30 percent or more of our current petroleum production."

Moreover, by engineering the bacteria differently, they believe their system could produce a variety of petroleum-based chemicals in a sustainable way.


Story Source:

The above story is based on materials provided by University of Michigan. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jeremy J. Minty, Marc E. Singer, Scott A. Scholz, Chang-Hoon Bae, Jung-Ho Ahn, Clifton E. Foster, James C. Liao, and Xiaoxia Nina Lin. Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass. PNAS, 2013 DOI: 10.1073/pnas.1218447110

Cite This Page:

University of Michigan. "Microbial team turns corn stalks and leaves into better biofuel." ScienceDaily. ScienceDaily, 19 August 2013. <www.sciencedaily.com/releases/2013/08/130819162517.htm>.
University of Michigan. (2013, August 19). Microbial team turns corn stalks and leaves into better biofuel. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2013/08/130819162517.htm
University of Michigan. "Microbial team turns corn stalks and leaves into better biofuel." ScienceDaily. www.sciencedaily.com/releases/2013/08/130819162517.htm (accessed July 30, 2014).

Share This




More Plants & Animals News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Thousands Flocking to German Crop Circle

Raw: Thousands Flocking to German Crop Circle

AP (July 30, 2014) Thousands of people are trekking to a Bavarian farmer's field to check out a mysterious set of crop circles. (July 30) Video provided by AP
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com
At Least 20 Chikungunya Cases in New Jersey

At Least 20 Chikungunya Cases in New Jersey

AP (July 30, 2014) At least 20 New Jersey residents have tested positive for chikungunya, a mosquito-borne virus that has spread through the Caribbean. (July 30) Video provided by AP
Powered by NewsLook.com
Raw: Otters Enjoy Water Slides at Japan Zoo

Raw: Otters Enjoy Water Slides at Japan Zoo

AP (July 30, 2014) River otters were hitting the water slides to beat the summer heatwave on Wednesday at Ichikawa City's Zoological and Botanical Garden. (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins