Featured Research

from universities, journals, and other organizations

Adjusting bacteria in intestines may lead to obesity treatments

Date:
September 24, 2013
Source:
Penn State
Summary:
A drug that appears to target specific intestinal bacteria in the guts of mice may create a chain reaction that could eventually lead to new treatments for obesity and diabetes in humans, according to a team of researchers.

A drug that appears to target specific intestinal bacteria in the guts of mice may create a chain reaction that could eventually lead to new treatments for obesity and diabetes in humans, according to a team of researchers.

Related Articles


Mice fed a high-fat diet and provided tempol, an anti-oxidant drug that may help protect people from the effects of radiation, were significantly less obese than those that did not receive the drug, according to Andrew Patterson, assistant professor of molecular toxicology, Penn State, who worked with Frank J. Gonzalez, laboratory metabolism chief, and James B. Mitchell, radiation biology branch chief, both of the National Cancer Institute.

"The two interesting findings are that the mice that received tempol didn't gain as much weight and the tempol somehow impacted the gut microbiome of these mice," said Patterson. "Eventually, we hope that this can lead to a new line of therapeutics to treat obesity and diabetes."

The microbiome is the biological environment of microorganisms within the human body.

The researchers, who reported their findings in the current issue of Nature Communications, said that tempol reduces some members of a bacteria -- a genus of Lactobacillus -- in the guts of mice. When the Lactobacillus levels decreases, a bile acid -- tauro-beta-muricholic acid -- increases. This inhibits FXR -- farnesoid X receptor, which regulates the metabolism of bile acids, fats and glucose in the body, according to the researchers.

"The study suggests that inhibiting FXR in the intestine might be a potential target for anti-obesity drugs," said Gonzalez.

The researchers said that tempol may help treat type 2 diabetes symptoms. In addition to lower weight gain, the tempol-treated mice on a high-fat diet had lower blood glucose and insulin levels.

"Previously, Dr. Mitchell observed a significant difference in weight gain in mice on tempol-containing diet," said Patterson. "He approached us to help figure out what was going on, and it had been an interesting journey wading through the complexities of the microbiome."

Other studies hinted at the relationship between tempol, the gut microbiome and obesity, but did not focus on why the drug seemed to control weigh gain, according to Patterson.

The researchers said these studies are demonstrating how integrated the 100 trillion microbes that make up the human microbiome are with metabolism and health and how the microbiome may provide more pathways to treating other disorders.

"There is a tremendous interest in how the microbiome can be manipulated in a therapeutic way," said Patterson. "And we need to look at these microbiome management techniques in a good, unbiased way."

In the study, the researchers dissolved the tempol in drinking water, or delivered it directly to the mice. Within three weeks, tempol reduced the weight gain for the mice in that group. The mice showed significant reduction in weight gain even after 16 weeks.

To further test the role of FXR in obesity, the researchers placed mice that were genetically modified so that they lack FXR on the same high-fat diet. This group was resistant to the effects of tempol and taura-beta-muricholic acid, which further strengthened the importance of FXR in mediating the anti-obesity effect.

Gonzalez said that there are indications that FXR plays a similar role in human obesity and diabetes.

The researchers must now test the treatments to ensure it is effective in humans, as well as check for any potential side effects, including cancer.


Story Source:

The above story is based on materials provided by Penn State. Note: Materials may be edited for content and length.


Journal Reference:

  1. Fei Li, Changtao Jiang, Kristopher W. Krausz, Yunfei Li, Istvan Albert, Haiping Hao, Kristin M. Fabre, James B. Mitchell, Andrew D. Patterson, Frank J. Gonzalez. Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity. Nature Communications, 2013; 4 DOI: 10.1038/ncomms3384

Cite This Page:

Penn State. "Adjusting bacteria in intestines may lead to obesity treatments." ScienceDaily. ScienceDaily, 24 September 2013. <www.sciencedaily.com/releases/2013/09/130924113452.htm>.
Penn State. (2013, September 24). Adjusting bacteria in intestines may lead to obesity treatments. ScienceDaily. Retrieved December 17, 2014 from www.sciencedaily.com/releases/2013/09/130924113452.htm
Penn State. "Adjusting bacteria in intestines may lead to obesity treatments." ScienceDaily. www.sciencedaily.com/releases/2013/09/130924113452.htm (accessed December 17, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Wednesday, December 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
Flu Outbreak Closing Schools in Ohio

Flu Outbreak Closing Schools in Ohio

AP (Dec. 17, 2014) A wave of flu illnesses has forced some Ohio schools to shut down over the past week. State officials confirmed one pediatric flu-related death, a 15-year-old girl in southern Ohio. (Dec. 17) Video provided by AP
Powered by NewsLook.com
Feeling Young Might Mean A Longer Life Span

Feeling Young Might Mean A Longer Life Span

Newsy (Dec. 16, 2014) A study published in JAMA shows that people who feel younger than their chronological age might actually live longer than those who feel old. Video provided by Newsy
Powered by NewsLook.com
2016 Olympic Waters Feature 'Super Bacteria' Researchers Say

2016 Olympic Waters Feature 'Super Bacteria' Researchers Say

Newsy (Dec. 16, 2014) Researchers found the bacteria Klebsiella pneumoniae Carbapenemase in the water where the 2016 Olympics is supposed to take place. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins